Answer to Question #18650 in Algebra for Mohammad

Question #18650
For any field k of characteristic p, let G = SL2(Fp) act on the polynomial ring A = k[x, y] by linear changes of the variables {x, y}, and let Vd ⊆ A (d ≥ 0) be the kG-submodule of homogeneous polynomials of degree d in A. It is known (and thus you may assume) that V0, . . . , Vp−1 are a complete set of simple modules over kG. Compute the composition factors of Vp, and show that Vp is semisimple over kG if and only if p = 2 .
0
Expert's answer

Answer in progress...

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS