Given f(x)= 3x-5, g(x)= x2-9. What is (f+g)(-2)
You have the following functions
"f(x)=3x-5" and "g(x)=x^{2}-9"
The sum in the compound functions is given by
"(f+g)(x)=f(x)+g(x)"
Obtaining the compound function
"(f+g)(x)=f(x)+g(x)\\\\\n(f+g)(x)=3x-5+x^{2}-9\\\\\n(f+g)(x)=x^{2}+3x-5-9\\\\\n(f+g)(x)=x^{2}+3x-14"
Evaluating numerically at x =-2
"(f+g)(-2)=x^{2}+3x-14 \\\\\n(f+g)(-2)=(-2)^{2}+3(-2)-14\\\\\n(f+g)(-2)=4-6-14\\\\\n(f+g)(-2)=-16"
Answer "\\displaystyle \\color{red}{\\boxed{(f+g)(-2)=-16}}"
Comments
Leave a comment