Show that rad R is the intersection A of the annihilators of all simple left R-modules.
1
Expert's answer
2012-10-30T10:34:59-0400
We show rad R = A. For any modular maximal left ideal m,we have (rad R) R ⊆rad R ⊆m. Therefore, (rad R) · R/m = 0, sorad R ⊆ A. Conversely, if a ∈ A, then aR ⊆m for any modular maximal left ideal, so aR ⊆rad R. Since rad R is quasi-regular,so is aR; hence a ∈rad R.
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments