Show step by step:
Find the inverse for y=(x-3)3+1
y=(x−3)3+1y=(x-3)^3+1y=(x−3)3+1
Interchange the variables:
x=(y−3)3+1x=(y-3)^3+1x=(y−3)3+1
Solve for yyy :
−(y−3)3=−x+1-(y-3)^3=-x+1−(y−3)3=−x+1
(y−3)3=x−1(y-3)^3=x-1(y−3)3=x−1
y−3=x−13y-3=\sqrt[3]{x-1}y−3=3x−1
y=x−13+3y=\sqrt[3]{x-1}+3y=3x−1+3
Replace the yyy with f−1(x)f^{-1}(x)f−1(x) to show the final answer:
f−1(x)=x−13+3f^{-1}(x)=\sqrt[3]{x-1}+3f−1(x)=3x−1+3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments