Let three first numbers in an arithmetic progression are x,x+d,x+2d.
Then x+x+d+x+2d=15
x+1x+d+3=x+d+3x+2d+9
3x+3d=15=>d=5−x
(x+5−x+3)2=(x+1)(x+2(5−x)+9)
(x+1)(19−x)=64
−x2+18x+19=64
x2−18x+45=0
(x−3)(x−15)=0
x1=3,x2=15d1=2,d2=−10
x=3,y=5,z=7
or
x=15,y=5,z=−5
Comments