Two points (p,q) on a linear supply equation are (3.5,116000) and (5,180000)
Determine supply function.
compose the equation of a line at two points:
p−3.55−3.5=q−116000180000−116000⇒p−3.51.5=q−11600064000⇒q−116000=640001.5(p−3.5)⇒\frac{{p - 3.5}}{{5 - 3.5}} = \frac{{q - 116000}}{{180000 - 116000}} \Rightarrow \frac{{p - 3.5}}{{1.5}} = \frac{{q - 116000}}{{{\rm{64000}}}} \Rightarrow q - 116000 = \frac{{{\rm{64000}}}}{{1.5}}\left( {p - 3.5} \right) \Rightarrow5−3.5p−3.5=180000−116000q−116000⇒1.5p−3.5=64000q−116000⇒q−116000=1.564000(p−3.5)⇒
⇒q=1280003p−1000003⇒q=128000p−1000003\Rightarrow q = \frac{{128000}}{3}p - \frac{{100000}}{3} \Rightarrow q = \frac{{128000p - 100000}}{3}⇒q=3128000p−3100000⇒q=3128000p−100000
Answer: q=128000p−1000003q = \frac{{128000p - 100000}}{3}q=3128000p−100000
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment