Let A, B be left ideals in a ring R, and any idempotent e ∈ R. Show that
eR ∩ (A + B) = (eR ∩ A) + (eR ∩ B), and eR + (A ∩ B) = (eR + A) ∩ (eR + B).
no longer hold if eR is replaced by Re.
1
Expert's answer
2012-10-25T10:25:11-0400
If x = uy where u ∈U(R), then Rx = Ruy = Ry. Conversely, assume Rx = Ry. Then, there exists a right R-isomorphism f : yR → xR such that f(y) = x. Write RR= yR ⊕ A = xR ⊕ B, where A, B are right ideals. By considering the composition factors of RR, yRand xR, we see that A ∼B as right R-modules. Therefore, f can be extended to an automorphism g of RR. Letting u = g(1) ∈U(R), we have x = f(y) = g(y) = g(1y) = uy.
Numbers and figures are an essential part of our world, necessary for almost everything we do every day. As important…
APPROVED BY CLIENTS
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments
Leave a comment