If m and m' are maximal right ideals in a ring R, show that the (simple) right R-modules R/m and R/m' are isomorphic iff there exists an element r ∈ R\m such that rm' ⊆ m. In this case, show that m and m' contain exactly the same ideals of R.
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments