Find the values of x given X2 - 4x + 13 = 0
The roots of qudratic equation are:
x1,2=−b±b2−4ac2a,x_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a},x1,2=2a−b±b2−4ac,
where a = 1;
b = -4;
c = 13.
So,
x1,2=−(−4)±(−4)2−4⋅1⋅132⋅1=2±3−1=2±3i.x_{1,2}=\frac{-(-4)\pm \sqrt{(-4)^2-4\cdot 1\cdot13}}{2\cdot 1}=2\pm 3\sqrt{-1}=2\pm 3i.x1,2=2⋅1−(−4)±(−4)2−4⋅1⋅13=2±3−1=2±3i.
Answer: x1 = 2 + 3i, x2 = 2 - 3i.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments