The first three terms of an arithmetic progression are 5x, 2x+3, and 2x+7 respectively. Find the value of x
a1=5xa_1=5xa1=5x
a1+d=2x+3a_1+d=2x+3a1+d=2x+3
a1+2d=2x+7a_1+2d=2x+7a1+2d=2x+7
Substituting for the value a1a_1a1
5x+d=2x+35x+d=2x+35x+d=2x+3
5x+2d=2x+75x+2d=2x+75x+2d=2x+7
Forming simultaneous equation and solving by substitution ;
3x+d=33x+d=33x+d=3
3x+2d=73x+2d=73x+2d=7
d=3−3xd=3-3xd=3−3x
6−6x+3x=76-6x+3x=76−6x+3x=7
6−3x=76-3x=76−3x=7
3x=133x=133x=13
x=133x=\frac{13}{3}x=313
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments