Solve using the quadratic formula:
x2 + 4x +3=0
let's use the discriminant formula
D = b2 - 4ac
a=1
b=4
c=3
D = b2 - 4ac = 42-4*1*3=16-12=4
now let's find the x1 and x2 using the discriminant
x1= (−b+D)/2a(-b+\sqrt{\smash[b]{D}})/2a(−b+D)/2a = (−4+4))/2∗1=(−4+2)/2=−2/2=−1(-4+\sqrt{\smash[b]{4}}))/2*1=(-4+2)/2=-2/2=-1(−4+4))/2∗1=(−4+2)/2=−2/2=−1
x2= (−b−D)/2a(-b-\sqrt{\smash[b]{D}})/2a(−b−D)/2a =(−4−4))/2∗1=(−4−2)/2=−6/2=−3(-4-\sqrt{\smash[b]{4}}))/2*1=(-4-2)/2=-6/2=-3(−4−4))/2∗1=(−4−2)/2=−6/2=−3
The answer is
x1= -1
x2= -3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments