Question #160469

f is a linear function, f (x) = mx + c. a. Find f (x) if it is equal to its inverse: f ‐ ¹ (x) = f (x). b. Find f (x), if f (f (x)) = f (x)


1
Expert's answer
2021-02-03T03:45:23-0500

a. If ff maps xx to y,y, then f1f^{-1} maps yy to x.x.This gives rise to the cancellation formulas:

f1(f(x))=x,f^{-1}(f(x))=x, for every xx in the domain of f(x),f(x),

f(f1(x))=x,f(f^{-1}(x))=x, for every xx in the domain of f1(x).f^{-1}(x).

Given f1(f(x))=f(x).f^{-1}(f(x))=f(x). Then f(x)=x.f(x)=x.


b. Given f(f(x))=f(x).f(f(x))=f(x). Then


m(mx+b)+b=mx+bm(mx+b)+b=mx+b

m2x+(m+1)b=mx+bm^2x+(m+1)b=mx+b

m2=mm^2=mm+1=1 or b=0m+1=1\ or\ b=0



Then f(x)=bf(x)=b or f(x)=x.f(x)=x.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS