a. If f maps x to y, then f−1 maps y to x.This gives rise to the cancellation formulas:
f−1(f(x))=x, for every x in the domain of f(x),
f(f−1(x))=x, for every x in the domain of f−1(x).
Given f−1(f(x))=f(x). Then f(x)=x.
b. Given f(f(x))=f(x). Then
m(mx+b)+b=mx+b
m2x+(m+1)b=mx+b
m2=mm+1=1 or b=0
Then f(x)=b or f(x)=x.
Comments