Solution
1)
Question: a 2 × a 3 × a 2 3 \qquad\qquad
\begin{aligned}
a^2\times a^3 \times a^\frac{2}{3}
\end{aligned} a 2 × a 3 × a 3 2 Answer:= a 2 + 3 + 2 3 = a 17 3 \qquad\qquad
\begin{aligned}
&=a^{2+3+\frac{2}{3}}\\
&=a^\frac{17}{3}
\end{aligned} = a 2 + 3 + 3 2 = a 3 17 2)
Q:( a + b ) 8 ( a + b ) 5 \qquad\qquad
\begin{aligned}
\frac{(a+b)^8}{(a+b)^5}
\end{aligned} ( a + b ) 5 ( a + b ) 8 A:= ( a + b ) ( 8 − 5 ) = ( a + b ) 3 \qquad\qquad
\begin{aligned}
&=(a+b)^{(8-5)}\\
&=(a+b)^3
\end{aligned} = ( a + b ) ( 8 − 5 ) = ( a + b ) 3 3)
Q:( a + b ) 8 \qquad\qquad
\begin{aligned}
\sqrt{(a+b)^8}
\end{aligned} ( a + b ) 8 A: = [ ( a + b ) 8 ] 1 2 = ( a + b ) 8 × 1 2 = ( a + b ) 4 \qquad\qquad
\begin{aligned}
&=\bigg[(a+b)^8\bigg]^{\frac{1}{2}}\\
&=(a+b)^{8\times\frac{1}{2}}\\
&=(a+b)^4
\end{aligned} = [ ( a + b ) 8 ] 2 1 = ( a + b ) 8 × 2 1 = ( a + b ) 4
4)
Q:( a p ) − 5 \qquad\qquad
\begin{aligned}
(\frac{a}{p})^{-5}
\end{aligned} ( p a ) − 5 A: = a − 5 p − 5 = 1 a 5 × p 5 1 = p 5 a 5 = ( p a ) 5 \qquad\qquad
\begin{aligned}
&=\frac{a^{-5}}{p^{-5}}\\
&=\frac{1}{a^5}\times\frac{p^5}{1}\\
&=\frac{p^5}{a^5}\\
&=(\frac{p}{a})^5
\end{aligned} = p − 5 a − 5 = a 5 1 × 1 p 5 = a 5 p 5 = ( a p ) 5
5)
Q:( r + p ) 5 ÷ ( r + p ) 5 \qquad
\begin{aligned}
(r+p)^5 \div(r+p)^5
\end{aligned} ( r + p ) 5 ÷ ( r + p ) 5 A: = ( r + p ) 5 ( r + p ) 5 = ( r + p ) 5 − 5 = ( r + p ) 0 = 1 \qquad\qquad
\begin{aligned}
&=\frac{(r+p)^5}{(r+p)^5}\\
&=(r+p)^{5-5}\\
&=(r+p)^0\\
&=1
\end{aligned} = ( r + p ) 5 ( r + p ) 5 = ( r + p ) 5 − 5 = ( r + p ) 0 = 1
f)
Q:a 2 3 a 3 4 \qquad\qquad
\begin{aligned}
\frac{a^{\frac{2}{3}}}{a^{\frac{3}{4}}}\\
\end{aligned} a 4 3 a 3 2 A: = a ( 2 3 − 3 4 ) = a − 1 12 = 1 a 1 12 \qquad\qquad
\begin{aligned}
&=a^{(\frac{2}{3}-\frac{3}{4})}\\
&=a^{-\frac{1}{12}}\\
&=\frac{1}{a^\frac{1}{12}}
\end{aligned} = a ( 3 2 − 4 3 ) = a − 12 1 = a 12 1 1
g)
Q:a 8 × b 3 4 ( a b ) 3 × c − 6 \qquad
\begin{aligned}
\frac{a^8\times b^{\frac{3}{4}}}{(ab)^3\times c^{-6}}
\end{aligned} ( ab ) 3 × c − 6 a 8 × b 4 3 A: = a 8 × b 3 4 a 3 × b 3 × c − 6 = a ( 8 − 5 ) × b ( 3 4 − 3 ) c − 6 = a 3 × b − 9 4 c − 6 = a 3 × c 6 b 9 4 = a 3 × ( c 2 ) 3 b 9 4 = ( a c 2 ) 3 b 9 4 \qquad
\begin{aligned}
&=\frac{a^8\times b^{\frac{3}{4}}}{a^3\times b^3\times c^{-6}}\\
&=\frac{a^{(8-5)}\times b^{(\frac{3}{4}-3)}}{c^{-6}}\\
&=\frac{a^3\times b^{-\frac{9}{4}}}{c^{-6}}\\
&=\frac{a^3\times c^6}{b^{\frac{9}{4}}}\\
&=\frac{a^3\times (c^2)^3}{b^{\frac{9}{4}}}\\
&=\frac{(ac^2)^3}{b^{\frac{9}{4}}}
\end{aligned} = a 3 × b 3 × c − 6 a 8 × b 4 3 = c − 6 a ( 8 − 5 ) × b ( 4 3 − 3 ) = c − 6 a 3 × b − 4 9 = b 4 9 a 3 × c 6 = b 4 9 a 3 × ( c 2 ) 3 = b 4 9 ( a c 2 ) 3
Comments