"4^x+6^x=9^x\\\\"
Will divide by "4^x"
"1+\\frac{6^x}{4^x}=\\frac{9^x}{4^x}\\\\1+(\\frac{3}{2})^x=(\\frac{3}{2})^{2x}"
Put "(\\frac{3}{2})^x=t"
Then
"t^2-t-1=0"
"t=\\frac{1 \\mp \\sqrt{1^2-4\\times1\\times(-1)}}{2\\times1}\\\\t=\\frac{1\\mp \\sqrt{5}}{2}\\\\"
t should have only positive value because 3/2 is positive value and power of positive number always give positive value.
Thus
"t=\\frac{1+\\sqrt{5}}{2}"
"\\frac{1+\\sqrt{5}}{2}=(\\frac{3}{2})^x\n\\\\and\\\\ln(\\frac{1+\\sqrt{5}}{2})=xln(\\frac{3}{2})\\\\x=1.23"
Comments
Leave a comment