Question #155275
Solve the equation:
4^(x) + 6^(x) = 9^(x)
1
Expert's answer
2021-01-14T12:50:53-0500

4x+6x=9x4^x+6^x=9^x\\

Will divide by 4x4^x


1+6x4x=9x4x1+(32)x=(32)2x1+\frac{6^x}{4^x}=\frac{9^x}{4^x}\\1+(\frac{3}{2})^x=(\frac{3}{2})^{2x}


Put (32)x=t(\frac{3}{2})^x=t


Then

t2t1=0t^2-t-1=0


t=1124×1×(1)2×1t=152t=\frac{1 \mp \sqrt{1^2-4\times1\times(-1)}}{2\times1}\\t=\frac{1\mp \sqrt{5}}{2}\\


t should have only positive value because 3/2 is positive value and power of positive number always give positive value.

Thus

t=1+52t=\frac{1+\sqrt{5}}{2}


1+52=(32)xandln(1+52)=xln(32)x=1.23\frac{1+\sqrt{5}}{2}=(\frac{3}{2})^x \\and\\ln(\frac{1+\sqrt{5}}{2})=xln(\frac{3}{2})\\x=1.23





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS