4 x + 6 x = 9 x 4^x+6^x=9^x\\ 4 x + 6 x = 9 x
Will divide by 4 x 4^x 4 x
1 + 6 x 4 x = 9 x 4 x 1 + ( 3 2 ) x = ( 3 2 ) 2 x 1+\frac{6^x}{4^x}=\frac{9^x}{4^x}\\1+(\frac{3}{2})^x=(\frac{3}{2})^{2x} 1 + 4 x 6 x = 4 x 9 x 1 + ( 2 3 ) x = ( 2 3 ) 2 x
Put ( 3 2 ) x = t (\frac{3}{2})^x=t ( 2 3 ) x = t
Then
t 2 − t − 1 = 0 t^2-t-1=0 t 2 − t − 1 = 0
t = 1 ∓ 1 2 − 4 × 1 × ( − 1 ) 2 × 1 t = 1 ∓ 5 2 t=\frac{1 \mp \sqrt{1^2-4\times1\times(-1)}}{2\times1}\\t=\frac{1\mp \sqrt{5}}{2}\\ t = 2 × 1 1 ∓ 1 2 − 4 × 1 × ( − 1 ) t = 2 1 ∓ 5
t should have only positive value because 3/2 is positive value and power of positive number always give positive value.
Thus
t = 1 + 5 2 t=\frac{1+\sqrt{5}}{2} t = 2 1 + 5
1 + 5 2 = ( 3 2 ) x a n d l n ( 1 + 5 2 ) = x l n ( 3 2 ) x = 1.23 \frac{1+\sqrt{5}}{2}=(\frac{3}{2})^x
\\and\\ln(\frac{1+\sqrt{5}}{2})=xln(\frac{3}{2})\\x=1.23 2 1 + 5 = ( 2 3 ) x an d l n ( 2 1 + 5 ) = x l n ( 2 3 ) x = 1.23
Comments