Question #150955
Determine the polynomial function whose graph passes through the points (2, 4), (3,6) and (5,10). Also sketch the graph of the polynomial function. (Using Cramers Method).
1
Expert's answer
2020-12-15T19:42:33-0500

we have three points so we use second polynomial fitting like that

p(x)=a+bx+c2p(x) = a + bx + c^2

the points are (2, 4); (3, 6) and (5, 10).

y1=y_1 = ax12+bx1+cax_1^2 + bx_1+c

y2=ax22+bx2+cy_2 = ax_2^2 + bx_2 + c

y3=ax32+bx3+cy_3 = ax_3^2 + bx_3 + c

The task is to find a, b and c. Start by substituting each of the points into the equation, we have

4 = a(2)2 + b(2) + c;

6 = a(3)2 + b(3) + c;

10 = a(5)2 + b(5) + c;

We can write this more compactly as a matrix equation

[4219312551]\begin{bmatrix} 4&2&1\\ 9&3&1\\ 25&5&1 \end{bmatrix} [abc]\begin{bmatrix} a\\ b\\ c \end{bmatrix} = [4610]\begin{bmatrix} 4\\ 6\\ 10 \end{bmatrix}


Or we use Cramer's rule for:

4a + 2b + c = 4

9a + 3b + c = 6

25a + 5b + c = 10


D = [4219312551]\begin{bmatrix} 4&2&1\\ 9&3&1\\ 25&5&1 \end{bmatrix}= (4*3*1 + 2*1*25 + 1*9*5) - (25*3*1 + 5*1*4 + 1*9*2) = -6;


Dx = [4216311051]\begin{bmatrix} 4&2&1\\ 6&3&1\\ 10&5&1 \end{bmatrix} = (4*3*1 + 2*1*10 + 1*6*5) - (10 * 3 *1 + 5*1*4 + 1*6*2) = 0;


x = DxD=06=0\frac{D_x}{D} = \frac{0}{-6} = 0


Dy = [44196125101]\begin{bmatrix} 4&4&1\\ 9&6&1\\ 25&10&1 \end{bmatrix} = (4*6*1 + 4*1*25 + 1*9*10) - (25*6 + 10*1*4+1*9*4) = -12


b=DyD=126=2b = \frac{D_y}{D} = \frac{-12}{--6} = 2


Dz=[42493625510]_z = \begin{bmatrix} 4&2&4\\ 9&3&6\\ 25&5&10\end{bmatrix} = 0

c=DzD=012=0c = \frac{D_z}{D} = \frac{0}{-12} = 0

4 + c = 4 -> c = 0;

y = 2x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS