It is known that X n + 1 = 4 X n + 15 X n 2 + 2 X_{n+1}=4X_n+\sqrt{15X_n^2+2} X n + 1 = 4 X n + 15 X n 2 + 2 and X 2017 + X 2023 = 1464 X_{2017}+X_{2023}=1464 X 2017 + X 2023 = 1464 .
Note that X n + 1 = 4 X n + 15 X n 2 + 2 > 4 X n + 9 X n 2 = 4 X n + 3 ∣ X n ∣ ≥ 4 X n − 3 X n = X n X_{n+1}= 4X_n+\sqrt{15X_n^2+2}>4X_n+\sqrt{9X_n^2}=4X_n+3|X_n|\geq 4X_n-3X_n=X_n X n + 1 = 4 X n + 15 X n 2 + 2 > 4 X n + 9 X n 2 = 4 X n + 3∣ X n ∣ ≥ 4 X n − 3 X n = X n
It means that this sequence is strictly increasing and X n = X k X_n\cancel{=}X_k X n = X k for all n = k n\cancel{=} k n = k .
Using the formula of the n n n th term, we get:
X n + 1 − 4 X n = 15 X n 2 + 2 X_{n+1}-4X_n=\sqrt{15X_n^2+2} X n + 1 − 4 X n = 15 X n 2 + 2
X n + 1 2 − 8 X n X n + 1 + 16 X n 2 = 15 X n 2 + 2 X_{n+1}^2-8X_nX_{n+1}+16X_n^2=15X_n^2+2 X n + 1 2 − 8 X n X n + 1 + 16 X n 2 = 15 X n 2 + 2
X n + 1 2 − 8 X n X n + 1 + X n 2 = 2 X_{n+1}^2-8X_nX_{n+1}+X_n^2=2 X n + 1 2 − 8 X n X n + 1 + X n 2 = 2
If we consider n = k n=k n = k and n = k − 1 n=k-1 n = k − 1 , we get:
{ X k 2 − 8 X k − 1 X k + X k − 1 2 = 2 X k + 1 2 − 8 X k X k + 1 + X k 2 = 2 ⇒ X k + 1 2 − X k − 1 2 − 8 X k ( X k + 1 − X k − 1 ) = 0 \begin{cases}
X_{k}^2-8X_{k-1}X_{k}+X_{k-1}^2=2
\\
X_{k+1}^2-8X_kX_{k+1}+X_k^2=2
\\
\end{cases}
\quad \Rightarrow X_{k+1}^2-X^2_{k-1}-8X_{k}(X_{k+1}-X_{k-1})=0 { X k 2 − 8 X k − 1 X k + X k − 1 2 = 2 X k + 1 2 − 8 X k X k + 1 + X k 2 = 2 ⇒ X k + 1 2 − X k − 1 2 − 8 X k ( X k + 1 − X k − 1 ) = 0
or ( X k + 1 − X k − 1 ) ( X k + 1 + X k − 1 − 8 X k ) = 0 (X_{k+1}-X_{k-1})(X_{k+1}+X_{k-1}-8X_k)=0 ( X k + 1 − X k − 1 ) ( X k + 1 + X k − 1 − 8 X k ) = 0 .
Therefore, X k + 1 + X k − 1 − 8 X k = 0 X_{k+1}+X_{k-1}-8X_k=0 X k + 1 + X k − 1 − 8 X k = 0 for all k k k . (1)
Let us consider k = 2020 : k=2020: k = 2020 :
X 2021 + X 2019 = 8 X 2020 X_{2021}+X_{2019}=8X_{2020} X 2021 + X 2019 = 8 X 2020 .
Using formula (1) for k = 2021 k=2021 k = 2021 and k = 2019 k=2019 k = 2019 , we get:
X 2020 + X 2022 8 + X 2018 + X 2020 8 = 8 X 2020 \frac{X_{2020}+X_{2022}}{8}+\frac{X_{2018}+X_{2020}}{8}=8X_{2020} 8 X 2020 + X 2022 + 8 X 2018 + X 2020 = 8 X 2020
X 2022 + X 2018 = 62 X 2020 X_{2022}+X_{2018}=62X_{2020} X 2022 + X 2018 = 62 X 2020
Using formula (1) for k = 2022 k=2022 k = 2022 and k = 2018 k=2018 k = 2018 , we get:
X 2021 + X 2023 8 + X 2017 + X 2019 8 = 62 X 2020 \frac{X_{2021}+X_{2023}}{8}+\frac{X_{2017}+X_{2019}}{8}=62X_{2020} 8 X 2021 + X 2023 + 8 X 2017 + X 2019 = 62 X 2020
( X 2021 + X 2019 ) + ( X 2023 + X 2017 ) = 496 X 2020 (X_{2021}+X_{2019})+(X_{2023}+X_{2017})=496X_{2020} ( X 2021 + X 2019 ) + ( X 2023 + X 2017 ) = 496 X 2020
8 X 2020 + 1464 = 496 X 2020 8X_{2020}+1464=496X_{2020} 8 X 2020 + 1464 = 496 X 2020
488 X 2020 = 1464 488X_{2020}=1464 488 X 2020 = 1464
X 2020 = 3 X_{2020}=3 X 2020 = 3
Answer: X 2020 = 3. X_{2020}=3. X 2020 = 3.
Comments