It is known that "X_{n+1}=4X_n+\\sqrt{15X_n^2+2}" and "X_{2017}+X_{2023}=1464" .
Note that "X_{n+1}= 4X_n+\\sqrt{15X_n^2+2}>4X_n+\\sqrt{9X_n^2}=4X_n+3|X_n|\\geq 4X_n-3X_n=X_n"
It means that this sequence is strictly increasing and "X_n\\cancel{=}X_k" for all "n\\cancel{=} k" .
Using the formula of the "n" th term, we get:
"X_{n+1}-4X_n=\\sqrt{15X_n^2+2}"
"X_{n+1}^2-8X_nX_{n+1}+16X_n^2=15X_n^2+2"
"X_{n+1}^2-8X_nX_{n+1}+X_n^2=2"
If we consider "n=k" and "n=k-1" , we get:
"\\begin{cases}\n\nX_{k}^2-8X_{k-1}X_{k}+X_{k-1}^2=2\n\\\\\nX_{k+1}^2-8X_kX_{k+1}+X_k^2=2\n\n\\\\\n\\end{cases}\n\\quad \\Rightarrow X_{k+1}^2-X^2_{k-1}-8X_{k}(X_{k+1}-X_{k-1})=0"
or "(X_{k+1}-X_{k-1})(X_{k+1}+X_{k-1}-8X_k)=0" .
Therefore, "X_{k+1}+X_{k-1}-8X_k=0" for all "k" . (1)
Let us consider "k=2020:"
"X_{2021}+X_{2019}=8X_{2020}" .
Using formula (1) for "k=2021" and "k=2019" , we get:
"\\frac{X_{2020}+X_{2022}}{8}+\\frac{X_{2018}+X_{2020}}{8}=8X_{2020}"
"X_{2022}+X_{2018}=62X_{2020}"
Using formula (1) for "k=2022" and "k=2018", we get:
"\\frac{X_{2021}+X_{2023}}{8}+\\frac{X_{2017}+X_{2019}}{8}=62X_{2020}"
"(X_{2021}+X_{2019})+(X_{2023}+X_{2017})=496X_{2020}"
"8X_{2020}+1464=496X_{2020}"
"488X_{2020}=1464"
"X_{2020}=3"
Answer: "X_{2020}=3."
Comments
Leave a comment