Question #150269
Find all values of the parameter for which each of the roots of the equation x^3 - 3x - a = 0 not less than (a/10) + (6/5). In response, write down the sum of the integer values of the parameter a such that their modulus is less than 61.
1
Expert's answer
2020-12-21T16:41:45-0500

Solution-1:

1) We should simply the given equation:


x(x23)=ax(x^2-3)=a


in this case, we assume that:

x1=a  x_1=a\;

x23=1x^2-3=1 from this we obtain the remaining roots of the equation:

x2=2  ;  x3=2x_2=2\;;\;x_3=-2


Let`s back to the question:

I)

a10+652\frac{a}{10}+\frac{6}{5}\geq-2


a32a\geq-32


II)

a+2+2<61a+|-2|+2\lt61

a<57a\lt57


Answer:a  ϵ[32,57)a\;\epsilon [-32,57)



Solution-2:

1) We should simply the given equation:


x(x23)=ax(x^2-3)=a


in this case, we assume that:

x1=1  x_1=1\;

x23=ax^2-3=a from this we obtain the remaining roots of the equation:

x2=a+3  ;  x3=a+3x_2=\sqrt{\smash[b]{a+3}}\;;\;x_3=-\sqrt{\smash[b]{a+3}}


Let`s back to the question:

I)

a10+65a+3\frac{a}{10}+\frac{6}{5}\geq-\sqrt{\smash[b]{a+3}}


a  ϵ[,]a\;\epsilon[-\infty,\infty] but the domain of x2  ,x3x_2\;,x_3 should be a  3a\geq\;-3


II)

1+a+3+a+3<611+|-\sqrt{\smash[b]{a+3}}|+|\sqrt{\smash[b]{a+3}}|\lt61

a<897a\lt897


Answer:

a  ϵ[3,897)a\;\epsilon [-3,897)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS