i) long division
"\\begin{matrix}\n & \\underline{3x^3+2x^2-4x+15} \\\\\n x+2&)3x^4+8x^3+7x+2\\ \\ \\ \\\\\n-\n\\end{matrix}""\\begin{matrix}\n & \\underline{3x^4+6x^3 }&&\\ \\ \\\\\n & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 2x^3+0x^2+7x+2 \\\\\n \n\\end{matrix}""-\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\""\\begin{matrix}\n & \\underline{2x^3+4x^2 }&& \\\\\n & \\ \\ \\ -4x^2+7x+2 \n\\end{matrix}""-\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\""\\begin{matrix}\n & \\underline{-4x^2-8x}&&& \\\\\n & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 15x+2 \n\\end{matrix}""-\\ \\ \\ \\ \\""\\begin{matrix}\n &\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\underline{15x+30} \\\\\n & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ -28 \n\\end{matrix}"
"\\dfrac{3x^4+8x^3+7x+2}{x+2}=3x^3+2x^2-4x+15+\\dfrac{-28}{x+2}"
"Quotient=3x^3+2x^2-4x+15"
"Remainder=-28"
ii) Synthetic division
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n & x^4 & x^3 & x^2 & x^1 & x^0 \\\\ \\hline\n -2 & 3 & 8 & 0 & 7 & 2 \\\\\n & & -6 & -4 & 8 & -30 \\\\\n \\hdashline\n & 3 & 2 & -4 &15 & -28\n\\end{array}"
"\\dfrac{3x^4+8x^3+7x+2}{x+2}=3x^3+2x^2-4x+15+\\dfrac{-28}{x+2}"
"Quotient=3x^3+2x^2-4x+15"
"Remainder=-28"
b) i)
Synthetic division
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n & x^3 & x^2 & x^1 & x^0 \\\\ \\hline\n -1 & 1 & 9 & 23 & 15 \\\\\n & & -1 & -8 & 8 & \\\\\n \\hdashline\n & 1 & 8 & 15 &0\n\\end{array}"
"\\dfrac{x^3+9x^2+23x+15}{x+1}=x^2+8x+15"
"Quotient=x^2+8x+15"
"Remainder=0"
"x^2+8x+15=(x+5)(x+3)"
"x^3+9x^2+23x+15=(x+5)(x+3)(x+1)"
ii) Show if the F(x) = 3x4 +8x3 +7x2
Synthetic division
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n & x^4 & x^3 & x^2 & x^1 & x^0 \\\\ \\hline\n -2 & 3 & 8 & 7 & 0 & 0 \\\\\n & & -6 & -4 & -6 & 12 \\\\\n \\hdashline\n & 3 & 2 & 3 &-6 & 12\n\\end{array}"
"\\dfrac{3x^4+8x^3+7x^2}{x+2}=3x^3+2x^2+3x-6+\\dfrac{12}{x+2}"
"Quotient=3x^3+2x^2+3x-6"
"Remainder=12"
Comments
Leave a comment