Σi=1n(1/√i)≤1/√n![Πi=2n(√i−1)]+2[Σi=2n(1/√i)] 
For i=2:
1+1/2=(1/2)(2−1)+2/2 
Weierstrass' inequality:
Πi=1n(1−ai)≥1−Σi=1nai 
ai∈[0..1] 
Let ai=1/i 
Then:
Σi=1nai≤1/√n![Πi=2n(1/ai−1)]+2Σi=2nai 
1≤1/√n![Πi=2n(ai1−ai)]+Σi=2nai 
1−Σi=2nai≤n!1Πi=2n(ai1−ai) 
But, since
n!Πi=2nai1=n!Πi=2ni=1 
we get Weierstrass' inequality.
Comments