"\u03a3^n_{i=1} (1\/\u221ai)\u2264 1\/\u221an! [\u03a0^n_{i=2} (\u221ai-1)] +2[\u03a3^n_{i=2} (1\/\u221ai)]"
For i=2:
"1+1\/\\sqrt{2}=(1\/\\sqrt2)(\\sqrt2-1)+2\/\\sqrt{2}"
Weierstrass' inequality:
"\\Pi^n_{i=1}(1-a_i)\\geq1-\\Sigma^n_{i=1}a_i"
"a_i\\in[0..1]"
Let "a_i=1\/\\sqrt{i}"
Then:
"\u03a3^n_{i=1}a_i\u2264 1\/\u221an! [\u03a0^n_{i=2} (1\/a_i-1)] +2\u03a3^n_{i=2}a_i"
"1\u2264 1\/\u221an! [\u03a0^n_{i=2} (\\frac{1-a_i}{a_i})] +\u03a3^n_{i=2}a_i"
"1-\u03a3^n_{i=2}a_i\u2264 \\frac{1}{\\sqrt{n!}} \u03a0^n_{i=2} (\\frac{1-a_i}{a_i})"
But, since
"\\frac{1}{\\sqrt{n!}\\Pi^n_{i=2}a_i}=\\frac{\\Pi^n_{i=2}\\sqrt{i}}{\\sqrt{n!}}=1"
we get Weierstrass' inequality.
Comments
Leave a comment