Question #149874
Apply weierstrass' inequality to prove that
[nΣi=1 (1/√i)] ≤ 1/√n! [nΠi=2 (√i-1)] +2[nΣi=2 (1/√i)]
1
Expert's answer
2020-12-14T18:37:45-0500

Σi=1n(1/i)1/n![Πi=2n(i1)]+2[Σi=2n(1/i)]Σ^n_{i=1} (1/√i)≤ 1/√n! [Π^n_{i=2} (√i-1)] +2[Σ^n_{i=2} (1/√i)]

For i=2:

1+1/2=(1/2)(21)+2/21+1/\sqrt{2}=(1/\sqrt2)(\sqrt2-1)+2/\sqrt{2}


Weierstrass' inequality:

Πi=1n(1ai)1Σi=1nai\Pi^n_{i=1}(1-a_i)\geq1-\Sigma^n_{i=1}a_i

ai[0..1]a_i\in[0..1]


Let ai=1/ia_i=1/\sqrt{i}

Then:

Σi=1nai1/n![Πi=2n(1/ai1)]+2Σi=2naiΣ^n_{i=1}a_i≤ 1/√n! [Π^n_{i=2} (1/a_i-1)] +2Σ^n_{i=2}a_i

11/n![Πi=2n(1aiai)]+Σi=2nai1≤ 1/√n! [Π^n_{i=2} (\frac{1-a_i}{a_i})] +Σ^n_{i=2}a_i

1Σi=2nai1n!Πi=2n(1aiai)1-Σ^n_{i=2}a_i≤ \frac{1}{\sqrt{n!}} Π^n_{i=2} (\frac{1-a_i}{a_i})

But, since

1n!Πi=2nai=Πi=2nin!=1\frac{1}{\sqrt{n!}\Pi^n_{i=2}a_i}=\frac{\Pi^n_{i=2}\sqrt{i}}{\sqrt{n!}}=1


we get Weierstrass' inequality.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS