Σ i = 1 n ( 1 / √ i ) ≤ 1 / √ n ! [ Π i = 2 n ( √ i − 1 ) ] + 2 [ Σ i = 2 n ( 1 / √ i ) ] Σ^n_{i=1} (1/√i)≤ 1/√n! [Π^n_{i=2} (√i-1)] +2[Σ^n_{i=2} (1/√i)] Σ i = 1 n ( 1/√ i ) ≤ 1/√ n ! [ Π i = 2 n ( √ i − 1 )] + 2 [ Σ i = 2 n ( 1/√ i )]
For i=2:
1 + 1 / 2 = ( 1 / 2 ) ( 2 − 1 ) + 2 / 2 1+1/\sqrt{2}=(1/\sqrt2)(\sqrt2-1)+2/\sqrt{2} 1 + 1/ 2 = ( 1/ 2 ) ( 2 − 1 ) + 2/ 2
Weierstrass' inequality:
Π i = 1 n ( 1 − a i ) ≥ 1 − Σ i = 1 n a i \Pi^n_{i=1}(1-a_i)\geq1-\Sigma^n_{i=1}a_i Π i = 1 n ( 1 − a i ) ≥ 1 − Σ i = 1 n a i
a i ∈ [ 0..1 ] a_i\in[0..1] a i ∈ [ 0..1 ]
Let a i = 1 / i a_i=1/\sqrt{i} a i = 1/ i
Then:
Σ i = 1 n a i ≤ 1 / √ n ! [ Π i = 2 n ( 1 / a i − 1 ) ] + 2 Σ i = 2 n a i Σ^n_{i=1}a_i≤ 1/√n! [Π^n_{i=2} (1/a_i-1)] +2Σ^n_{i=2}a_i Σ i = 1 n a i ≤ 1/√ n ! [ Π i = 2 n ( 1/ a i − 1 )] + 2 Σ i = 2 n a i
1 ≤ 1 / √ n ! [ Π i = 2 n ( 1 − a i a i ) ] + Σ i = 2 n a i 1≤ 1/√n! [Π^n_{i=2} (\frac{1-a_i}{a_i})] +Σ^n_{i=2}a_i 1 ≤ 1/√ n ! [ Π i = 2 n ( a i 1 − a i )] + Σ i = 2 n a i
1 − Σ i = 2 n a i ≤ 1 n ! Π i = 2 n ( 1 − a i a i ) 1-Σ^n_{i=2}a_i≤ \frac{1}{\sqrt{n!}} Π^n_{i=2} (\frac{1-a_i}{a_i}) 1 − Σ i = 2 n a i ≤ n ! 1 Π i = 2 n ( a i 1 − a i )
But, since
1 n ! Π i = 2 n a i = Π i = 2 n i n ! = 1 \frac{1}{\sqrt{n!}\Pi^n_{i=2}a_i}=\frac{\Pi^n_{i=2}\sqrt{i}}{\sqrt{n!}}=1 n ! Π i = 2 n a i 1 = n ! Π i = 2 n i = 1
we get Weierstrass' inequality.
Comments