"f(y)=\\frac{4}{y-2}, g(x)=\\frac{5}{3x-1}"
"f\\circ g=\\frac{4(3x-1)}{7-6x}"
We have:
for domain of "g(x)" : "x\\neq1\/3"
for domain of "f(y)" : "y\\neq2" "\\implies \\frac{5}{3x-1}\\neq2\\implies x\\neq7\/6"
for domain of "f\\circ g" : "x\\neq7\/6"
So, resulting domain of "f\\circ g" : "x\\isin(-\\infin,1\/3)\\bigcup(1\/3,7\/6)\\bigcup(7\/6, \\infin)"
"f(x)=4+\\sqrt{x-2}" , domain: "x\\isin[2,\\infin)" ; range: "y\\isin[4,\\infin)"
"x=g(y)=(y-4)^2+2,\\, y \\geq 4."
Changing variables x and y we get inverse function:
"f^{-1}(x)=(x-4)^2+2" , domain: "x\\isin[4,\\infin)", range: "y\\isin[2,\\infin)"
Points of the form (a,b),(b,a) are reflected about the midpoint between the two points.
In our case the midpoint between (11,7) and (7,11) is (9,9).
So, (11,7) and (7,11) are reflected about (9,9).
Comments
Leave a comment