Given that "1 +Z^6 = 0"
"Z^6 = -1\\\\\nZ = (-1)^{1\/6}\\\\\nZ = (-1+0*i)^{1\/6}\\\\\nZ_k = (cos\\pi+ i*sin(2*k*\\pi+\\pi))^{1\/6} \\\\\nk = 0,1,2,3,4,5\\\\\nZ_k = cos(2*k+1)*\\pi\/6"
"Z_0 = cos \\pi\/6+isin\\pi\/6 = \\sqrt3\/2+i*1\/2"
"Z_1 = cos (3*\\pi\/6)+i*sin(3*\\pi\/6)= cos\\pi\/2+i*sin\\pi\/2 = 0+i*1"
"Z_2 = cos (5*\\pi\/6)+i*sin(5*\\pi\/6)= -\\sqrt3\/2+i*1\/2"
"Z_3 = cos (7*\\pi\/6)+i*sin(7*\\pi\/6)= -\\sqrt3\/2+i*(-1\/2)"
"Z_4 = cos (9*\\pi\/6)+i*sin(9*\\pi\/6)= cos(3*\\pi\/2)+ i*sin3*\\pi\/2=0+i*(-1)=0-i"
"Z_5 = cos (11*\\pi\/6)+i*sin(11*\\pi\/6)= cos(360-30)+ i*sin(360-30 )=\\sqrt3\/2-i*1\/2"
Comments
Leave a comment