Question #148909
Find all the roots of 1+z^6=0, and show them in an argnad diagram
1
Expert's answer
2020-12-09T16:05:12-0500

Given that 1+Z6=01 +Z^6 = 0


Z6=1Z=(1)1/6Z=(1+0i)1/6Zk=(cosπ+isin(2kπ+π))1/6k=0,1,2,3,4,5Zk=cos(2k+1)π/6Z^6 = -1\\ Z = (-1)^{1/6}\\ Z = (-1+0*i)^{1/6}\\ Z_k = (cos\pi+ i*sin(2*k*\pi+\pi))^{1/6} \\ k = 0,1,2,3,4,5\\ Z_k = cos(2*k+1)*\pi/6


  • if k = 0:

Z0=cosπ/6+isinπ/6=3/2+i1/2Z_0 = cos \pi/6+isin\pi/6 = \sqrt3/2+i*1/2


  • if k = 1:

Z1=cos(3π/6)+isin(3π/6)=cosπ/2+isinπ/2=0+i1Z_1 = cos (3*\pi/6)+i*sin(3*\pi/6)= cos\pi/2+i*sin\pi/2 = 0+i*1


  • if k = 2:

Z2=cos(5π/6)+isin(5π/6)=3/2+i1/2Z_2 = cos (5*\pi/6)+i*sin(5*\pi/6)= -\sqrt3/2+i*1/2


  • if k = 3:

Z3=cos(7π/6)+isin(7π/6)=3/2+i(1/2)Z_3 = cos (7*\pi/6)+i*sin(7*\pi/6)= -\sqrt3/2+i*(-1/2)


  • if k = 4:

Z4=cos(9π/6)+isin(9π/6)=cos(3π/2)+isin3π/2=0+i(1)=0iZ_4 = cos (9*\pi/6)+i*sin(9*\pi/6)= cos(3*\pi/2)+ i*sin3*\pi/2=0+i*(-1)=0-i

  • if k = 5:

Z5=cos(11π/6)+isin(11π/6)=cos(36030)+isin(36030)=3/2i1/2Z_5 = cos (11*\pi/6)+i*sin(11*\pi/6)= cos(360-30)+ i*sin(360-30 )=\sqrt3/2-i*1/2





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS