Given that 1 + Z 6 = 0 1 +Z^6 = 0 1 + Z 6 = 0 
Z 6 = − 1 Z = ( − 1 ) 1 / 6 Z = ( − 1 + 0 ∗ i ) 1 / 6 Z k = ( c o s π + i ∗ s i n ( 2 ∗ k ∗ π + π ) ) 1 / 6 k = 0 , 1 , 2 , 3 , 4 , 5 Z k = c o s ( 2 ∗ k + 1 ) ∗ π / 6 Z^6 = -1\\
Z = (-1)^{1/6}\\
Z = (-1+0*i)^{1/6}\\
Z_k = (cos\pi+ i*sin(2*k*\pi+\pi))^{1/6} \\
k = 0,1,2,3,4,5\\
Z_k = cos(2*k+1)*\pi/6 Z 6 = − 1 Z = ( − 1 ) 1/6 Z = ( − 1 + 0 ∗ i ) 1/6 Z k  = ( cos π + i ∗ s in ( 2 ∗ k ∗ π + π ) ) 1/6 k = 0 , 1 , 2 , 3 , 4 , 5 Z k  = cos ( 2 ∗ k + 1 ) ∗ π /6 
Z 0 = c o s π / 6 + i s i n π / 6 = 3 / 2 + i ∗ 1 / 2 Z_0 = cos \pi/6+isin\pi/6 = \sqrt3/2+i*1/2 Z 0  = cos π /6 + i s inπ /6 = 3  /2 + i ∗ 1/2 
Z 1 = c o s ( 3 ∗ π / 6 ) + i ∗ s i n ( 3 ∗ π / 6 ) = c o s π / 2 + i ∗ s i n π / 2 = 0 + i ∗ 1 Z_1 = cos (3*\pi/6)+i*sin(3*\pi/6)= cos\pi/2+i*sin\pi/2 = 0+i*1 Z 1  = cos ( 3 ∗ π /6 ) + i ∗ s in ( 3 ∗ π /6 ) = cos π /2 + i ∗ s inπ /2 = 0 + i ∗ 1 
Z 2 = c o s ( 5 ∗ π / 6 ) + i ∗ s i n ( 5 ∗ π / 6 ) = − 3 / 2 + i ∗ 1 / 2 Z_2 = cos (5*\pi/6)+i*sin(5*\pi/6)= -\sqrt3/2+i*1/2 Z 2  = cos ( 5 ∗ π /6 ) + i ∗ s in ( 5 ∗ π /6 ) = − 3  /2 + i ∗ 1/2 
Z 3 = c o s ( 7 ∗ π / 6 ) + i ∗ s i n ( 7 ∗ π / 6 ) = − 3 / 2 + i ∗ ( − 1 / 2 ) Z_3 = cos (7*\pi/6)+i*sin(7*\pi/6)= -\sqrt3/2+i*(-1/2) Z 3  = cos ( 7 ∗ π /6 ) + i ∗ s in ( 7 ∗ π /6 ) = − 3  /2 + i ∗ ( − 1/2 ) 
Z 4 = c o s ( 9 ∗ π / 6 ) + i ∗ s i n ( 9 ∗ π / 6 ) = c o s ( 3 ∗ π / 2 ) + i ∗ s i n 3 ∗ π / 2 = 0 + i ∗ ( − 1 ) = 0 − i Z_4 = cos (9*\pi/6)+i*sin(9*\pi/6)= cos(3*\pi/2)+ i*sin3*\pi/2=0+i*(-1)=0-i Z 4  = cos ( 9 ∗ π /6 ) + i ∗ s in ( 9 ∗ π /6 ) = cos ( 3 ∗ π /2 ) + i ∗ s in 3 ∗ π /2 = 0 + i ∗ ( − 1 ) = 0 − i 
 
Z 5 = c o s ( 11 ∗ π / 6 ) + i ∗ s i n ( 11 ∗ π / 6 ) = c o s ( 360 − 30 ) + i ∗ s i n ( 360 − 30 ) = 3 / 2 − i ∗ 1 / 2 Z_5 = cos (11*\pi/6)+i*sin(11*\pi/6)= cos(360-30)+ i*sin(360-30 )=\sqrt3/2-i*1/2 Z 5  = cos ( 11 ∗ π /6 ) + i ∗ s in ( 11 ∗ π /6 ) = cos ( 360 − 30 ) + i ∗ s in ( 360 − 30 ) = 3  /2 − i ∗ 1/2 
 
Comments