use the compound interest formula :
"a_n = a_0(1+p\/100)^n\\\\\n\\\\ \\ \\\\\na)S_n = 54000(1+0.15)^n\\\\ \nS_5 = 54000(1+0.15)^5 = 108613.228\\\\ \nb)from \\ 1 \\ to \\ n \\ : \\\\\n54 000 + 54000*1.15 +54000*1.15^2 +... +54000*1.15^n = \\\\\n54000 \\sum_0^n(1.15)^n = 54000*1\/3(23*1.15^n -20) = 18000(23*1.15^n -20)\\\\\nc) 18000(23*1.15^n -20) = 3654670\\\\\n23*1.15^n -20 = 203.04\\\\\n1.15^n = 9.7\\\\\nn = 16.2571\\\\\nn > 16\\\\\n\\text{more than 16 years}"
Comments
Leave a comment