Question #146726
use long division to determine the quotient and remainder when f(x) = 4x³+6x²-2x+5 is divided by (2x-1)
1
Expert's answer
2020-11-26T15:24:42-0500

2x2+4x+1                      2x1)4x3+6x22x+5                                   4x32x2                           8x22x+5                                             8x24x                          2x+5                                                                2x1                                    6\begin{matrix} & 2x^2 +4x+1 \ \ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x-1 &)\overline{4x^3+6x^2-2x+5} \\ & - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & \underline{4x^3-2x^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8x^2-2x+5 \\ & \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & \ \ \ \ \ \ \ \ \underline{8x^2-4x} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x+5 \\ & \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{2x-1} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6 \\ \end{matrix}

Therefore,


4x3+6x22x+52x1=2x2+4x+1+62x1\dfrac{4x^3+6x^2-2x+5}{2x-1}=2x^2+4x+1+\dfrac{6}{2x-1}

Quotient is 2x2+4x+1.2x^2+4x+1.

Remainder is 66



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS