Question #146724
use long division to find the quotient and the remainder when the function f(x) = x³+3x²-4 is divided by (x-1).hence factorize the function completely
1
Expert's answer
2020-11-26T15:27:04-0500

x2+4x+4               x1)x3+3x24                                   x3x2              4x24                                             4x24x                          4x4                                                                4x4                                    0\begin{matrix} & x^2 +4x+4 \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ x-1 &)\overline{x^3+3x^2-4} \\ & - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & \underline{x^3-x^2} \ \ \ \ \ \ \ \ \\ & \ \ \ \ \ \ 4x^2-4 \\ & \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & \ \ \ \ \ \ \ \ \underline{4x^2-4x} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4x-4 \\ & \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x-4} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \\ \end{matrix}

Therefore,


x3+3x24x1=x2+4x+4=(x+2)2\dfrac{x^3+3x^2-4}{x-1}=x^2+4x+4=(x+2)^2

x3+3x24=(x1)(x+2)2x^3+3x^2-4=(x-1)(x+2)^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS