Question #145764

A function f is said to have a removable discontinuity at a if:

1. f is either not defined or not continuous at a.

2. f(a) could either be defined or redefined so that the new function is continuous at a.


Let f(x)=(2x2+5x−7)/(5x−5).

Show that f has a removable discontinuity at 5 and determine the value for f(5) that would make f continuous at 5.

Need to redefine f(5)=


1
Expert's answer
2020-11-24T15:36:10-0500

Note : Most likely you have specified the function WRONGLY since

f(5)=252+557555=50+257255=6820=3.4f(5)=\frac{2\cdot5^2+5\cdot5-7}{5\cdot5-5}=\frac{50+25-7}{25-5}=\frac{68}{20}=3.4

At the specified point x0=5x_0=5 , the specific function y=f(x)y=f(x) has NO discontinuity.

But this function (if you don't change your condition) has a discontinuity (removable) at the point x0=1x_0=1 .

Therefore, first I will show how to eliminate the discontinuity of a function at a point x0=1x_0=1 , and then I will change the condition so that the discontinuity is at a point x0=5x_0=5 and try to investigate it.


1 case : the function does not change, a discontinuity under investigation changes x0=1x_0=1 .

By the definition, the function has a removable discontinuity of the first kind at the point x=x0x=x_0 if the condition



f(x00)=f(x0+0),wheref(x00)=limxx00f(x)f(x0+0)=limxx0+0f(x)f(x_0-0)=f(x_0+0),\,\,\,\text{where}\\[0.3cm] f(x_0-0)=\lim\limits_{x\to x_0-0}f(x)\\[0.3cm] f(x_0+0)=\lim\limits_{x\to x_0+0}f(x)

( more information : https://en.wikipedia.org/wiki/One-sided_limit )

Then,


f(10)=limx10f(x)=limx102x2+5x75x5==limx102x22x+7x75(x1)=limx102x(x1)+7(x1)5(x1)==limx10(x1)(2x+7)5(x1)=limx102x+75=95=1.4f(1+0)=limx1+0f(x)=limx1+02x2+5x75x5==limx1+02x22x+7x75(x1)=limx1+02x(x1)+7(x1)5(x1)==limx1+0(x1)(2x+7)5(x1)=limx1+02x+75=95=1.4f(10)=1.4=f(1+0)f(1-0)=\lim\limits_{x\to 1-0}f(x)=\lim\limits_{x\to 1-0}\frac{2x^2+5x-7}{5x-5}=\\[0.3cm] =\lim\limits_{x\to 1-0}\frac{2x^2-2x+7x-7}{5(x-1)}=\lim\limits_{x\to 1-0}\frac{2x(x-1)+7(x-1)}{5(x-1)}=\\[0.3cm] =\lim\limits_{x\to 1-0}\frac{(x-1)(2x+7)}{5(x-1)}=\lim\limits_{x\to 1-0}\frac{2x+7}{5}=\frac{9}{5}=1.4\\[0.3cm] f(1+0)=\lim\limits_{x\to 1+0}f(x)=\lim\limits_{x\to 1+0}\frac{2x^2+5x-7}{5x-5}=\\[0.3cm] =\lim\limits_{x\to 1+0}\frac{2x^2-2x+7x-7}{5(x-1)}=\lim\limits_{x\to 1+0}\frac{2x(x-1)+7(x-1)}{5(x-1)}=\\[0.3cm] =\lim\limits_{x\to 1+0}\frac{(x-1)(2x+7)}{5(x-1)}=\lim\limits_{x\to 1+0}\frac{2x+7}{5}=\frac{9}{5}=1.4\\[0.3cm] \boxed{f(1-0)=1.4=f(1+0)}

Conclusion,

If we define the function as follows, then the given function y=f(x)y=f(x) will be continuous at the point x0=1x_0=1 :



f(x)={2x2+5x75x5,x195,x=1f(x)=\left\{\begin{array}{l} \displaystyle\frac{2x^2+5x-7}{5x-5},\,\,\,x\neq1\\[0.3cm] \displaystyle\frac{9}{5},\,\,\,x=1 \end{array}\right.

2 case : the function changes, but the exploration point x0=5x_0=5 does not.

New function is


fnew=2x2+5x75(x5)f_{new}=\frac{2x^2+5x-7}{5(x-5)}



Then,


f(50)=limx50f(x)=limx502x2+5x75(x5)==limx50(x1)(2x+7)5(x5)=f(5+0)=limx5+0f(x)=limx5+02x2+5x75(x5)==limx5+0(x1)(2x+7)5(x5)=+f(50)=+=f(5+0)f(5-0)=\lim\limits_{x\to 5-0}f(x)=\lim\limits_{x\to 5-0}\frac{2x^2+5x-7}{5(x-5)}=\\[0.3cm] =\lim\limits_{x\to 5-0}\frac{(x-1)(2x+7)}{5(x-5)}=-\infty\\[0.3cm] f(5+0)=\lim\limits_{x\to 5+0}f(x)=\lim\limits_{x\to 5+0}\frac{2x^2+5x-7}{5(x-5)}=\\[0.3cm] =\lim\limits_{x\to 5+0}\frac{(x-1)(2x+7)}{5(x-5)}=+\infty\\[0.3cm] \boxed{f(5-0)=-\infty\neq+\infty=f(5+0)}

Conclusion,

The function has an inremovable discontinuity, a discontinuity of the second kind at the point x0x_0 .

Note : show additional confirmation of our calculations in the form of a graph of the specified function

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS