1.
3x2+2x–1=0
Here, we can apply quadratic formula
x=2a−b±b2−4ac
Where a = 3, b = 2, c = -1
Plugging these into the equation, we have;
x=2×−1−2±22−(4×3×−1)
x=6−2±√16
x=31 or x=−1
2.
x3−27=0 -27 crosses the other side
⟹x3=27 take the cube root of both sides
⟹3x3=327
x=3
3.
Forapolynomialequationwithintegercoefficients:anxn+an−1xn−1+…+a0
Ifa0andanareintegers,thenifthereisarationalsolution
itcouldbefoundbycheckingallthenumbersproduced
for±dividersofandividersofa0
Therefore, given the polynomial x³ +4x² + 5x + 2, we have;
a0=2,andan=1
Thedividersofa0:1,2,andThedividersofan:1
So, Thepossiblezerosnumbersare±11,2 or ±11 , ±12
And the rational zeros are obtained when these are replaced in the polynomial x3+4x2+5x+2 , we have x=−1,and,x=−2
4.
3x3+11x2+5x–3
The above procedure applies to this polynomial where;
a0=3,andan=3
And thedividersofa0:1,3,Thedividersofan:1,3
Hence the possible zeros are ±1,31,3
And the rational zeros are, when plugged back into the polynomial
3x3+11x2+5x–3 , we have; x=−1,x=−3,x=31
Comments