1.
3 x 2 + 2 x – 1 = 0 3x² + 2x – 1=0 3 x 2 + 2 x –1 = 0
Here, we can apply quadratic formula
x = − b ± b 2 − 4 a c 2 a x = \frac{−b± \sqrt{b^2−4ac} }{2a} x = 2 a − b ± b 2 − 4 a c
Where a = 3, b = 2, c = -1
Plugging these into the equation, we have;
x = − 2 ± 2 2 − ( 4 × 3 × − 1 ) 2 × − 1 x = \frac{−2± \sqrt{2^2−(4×3×-1)} }{2×-1} x = 2 ×− 1 − 2 ± 2 2 − ( 4 × 3 ×− 1 )
x = − 2 ± √ 16 6 x = \frac{−2±√16}{6} x = 6 − 2 ± √16
x = 1 3 x= \frac{1}{3} x = 3 1 or x = − 1 x = -1 x = − 1
2.
x 3 − 27 = 0 x^3 - 27 =0 x 3 − 27 = 0 -27 crosses the other side
⟹ x 3 = 27 \implies x^3 = 27 ⟹ x 3 = 27 take the cube root of both sides
⟹ x 3 3 = 27 3 \implies \sqrt[3]{x^3} = \sqrt[3]{27} ⟹ 3 x 3 = 3 27
x = 3 x = 3 x = 3
3.
F o r a p o l y n o m i a l e q u a t i o n w i t h i n t e g e r c o e f f i c i e n t s : a n x n + a n − 1 x n − 1 + … + a 0 \mathrm{For\:a\:polynomial\:equation\:with\:integer\:coefficients:\quad }a_nx^n+a_{n-1}x^{n-1}+\ldots +a_0 For a polynomial equation with integer coefficients : a n x n + a n − 1 x n − 1 + … + a 0
I f a 0 a n d a n a r e i n t e g e r s , t h e n i f t h e r e i s a r a t i o n a l s o l u t i o n \mathrm{If\:}a_0\mathrm{\:and\:}a_n\mathrm{\:are\:integers,\:then\:if\:there\:is\:a\:rational\:solution} If a 0 and a n are integers , then if there is a rational solution
i t c o u l d b e f o u n d b y c h e c k i n g a l l t h e n u m b e r s p r o d u c e d it\:could\:be\:found\:by\:checking\:all\:the\:numbers\:produced i t co u l d b e f o u n d b y c h ec kin g a ll t h e n u mb ers p ro d u ce d
f o r ± d i v i d e r s o f a 0 d i v i d e r s o f a n \:for\:\pm \frac{dividers\:of\:a_0}{dividers\:of\:a_n} f or ± d i v i d ers o f a n d i v i d ers o f a 0
Therefore, given the polynomial x³ +4x² + 5x + 2, we have;
a 0 = 2 , a n d a n = 1 a_0=2, and\:\quad a_n=1 a 0 = 2 , an d a n = 1
T h e d i v i d e r s o f a 0 : 1 , 2 , a n d T h e d i v i d e r s o f a n : 1 \mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2, and\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1 The dividers of a 0 : 1 , 2 , an d The dividers of a n : 1
So, T h e p o s s i b l e z e r o s n u m b e r s a r e ± 1 , 2 1 \mathrm{The\:possible\:zeros\:numbers\:are\:\:}\quad \pm \frac{1,\:2}{1} The possible zeros numbers are ± 1 1 , 2 or ± 1 1 \quad \pm \frac{1}{1} ± 1 1 , ± 2 1 \quad \pm \frac{2}{1} ± 1 2
And the rational zeros are obtained when these are replaced in the polynomial x 3 + 4 x 2 + 5 x + 2 x^3+4x^2+5x+2 x 3 + 4 x 2 + 5 x + 2 , we have x = − 1 , a n d , x = − 2 x = -1, and , x=-2 x = − 1 , an d , x = − 2
4.
3 x 3 + 11 x 2 + 5 x – 3 3x³ + 11x² + 5x – 3 3 x 3 + 11 x 2 + 5 x –3
The above procedure applies to this polynomial where;
a 0 = 3 , a n d a n = 3 a_0=3, and\:\quad a_n=3 a 0 = 3 , an d a n = 3
And t h e d i v i d e r s o f a 0 : 1 , 3 , T h e d i v i d e r s o f a n : 1 , 3 \mathrm{the\:dividers\:of\:}a_0:\quad 1,\:3,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1,\:3 the dividers of a 0 : 1 , 3 , The dividers of a n : 1 , 3
Hence the possible zeros are ± 1 , 3 1 , 3 \pm \frac{1,\:3}{1,\:3} ± 1 , 3 1 , 3
And the rational zeros are, when plugged back into the polynomial
3 x 3 + 11 x 2 + 5 x – 3 3x³ + 11x² + 5x – 3 3 x 3 + 11 x 2 + 5 x –3 , we have; x = − 1 , x = − 3 , x = 1 3 x=-1,\:x=-3,\:x=\frac{1}{3} x = − 1 , x = − 3 , x = 3 1
Comments