Question #145498
1. 3x² + 2x – 1=0
Ans.

2. x³-27
Ans.

State the possible rational zeros for each polynomial. Then find all rational zeros.
3. P(x) x³ +4x² + 5x + 2
Possible zeros:
Rational zeros:

4. 3x³ + 11x² + 5x – 3
Possible zeros:
Rational zeros:
1
Expert's answer
2020-11-23T05:23:37-0500

1.

3x2+2x1=03x² + 2x – 1=0

Here, we can apply quadratic formula

x=b±b24ac2ax = \frac{−b± \sqrt{b^2−4ac} }{2a}

Where a = 3, b = 2, c = -1

Plugging these into the equation, we have;

x=2±22(4×3×1)2×1x = \frac{−2± \sqrt{2^2−(4×3×-1)} }{2×-1}


x=2±166x = \frac{−2±√16}{6}


x=13x= \frac{1}{3} or x=1x = -1


2.

x327=0x^3 - 27 =0 -27 crosses the other side

    x3=27\implies x^3 = 27 take the cube root of both sides

    x33=273\implies \sqrt[3]{x^3} = \sqrt[3]{27}

x=3x = 3


3.

Forapolynomialequationwithintegercoefficients:anxn+an1xn1++a0\mathrm{For\:a\:polynomial\:equation\:with\:integer\:coefficients:\quad }a_nx^n+a_{n-1}x^{n-1}+\ldots +a_0

Ifa0andanareintegers,thenifthereisarationalsolution\mathrm{If\:}a_0\mathrm{\:and\:}a_n\mathrm{\:are\:integers,\:then\:if\:there\:is\:a\:rational\:solution}


itcouldbefoundbycheckingallthenumbersproducedit\:could\:be\:found\:by\:checking\:all\:the\:numbers\:produced

for±dividersofa0dividersofan\:for\:\pm \frac{dividers\:of\:a_0}{dividers\:of\:a_n}

Therefore, given the polynomial x³ +4x² + 5x + 2, we have;

a0=2,andan=1a_0=2, and\:\quad a_n=1

Thedividersofa0:1,2,andThedividersofan:1\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2, and\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1

So, Thepossiblezerosnumbersare±1,21\mathrm{The\:possible\:zeros\:numbers\:are\:\:}\quad \pm \frac{1,\:2}{1} or ±11\quad \pm \frac{1}{1} , ±21\quad \pm \frac{2}{1}


And the rational zeros are obtained when these are replaced in the polynomial x3+4x2+5x+2x^3+4x^2+5x+2 , we have x=1,and,x=2x = -1, and , x=-2


4.

3x3+11x2+5x33x³ + 11x² + 5x – 3

The above procedure applies to this polynomial where;

a0=3,andan=3a_0=3, and\:\quad a_n=3

And thedividersofa0:1,3,Thedividersofan:1,3\mathrm{the\:dividers\:of\:}a_0:\quad 1,\:3,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1,\:3

Hence the possible zeros are ±1,31,3\pm \frac{1,\:3}{1,\:3}

And the rational zeros are, when plugged back into the polynomial

3x3+11x2+5x33x³ + 11x² + 5x – 3 , we have; x=1,x=3,x=13x=-1,\:x=-3,\:x=\frac{1}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS