Question #144457
Determine the roots of the function f(x) = (5^(2x) − 6)^2 − (5^(2x) − 6) − 12
1
Expert's answer
2020-11-16T16:12:15-0500

The roots of the function f(x) are all values of x for which f(x)=0

(52x6)2(52x6)12=0(52x6)2+3(52x6)4(52x6)12=0(52x6)((52x6)+3)4((52x6)+3)=0(52x6)(52x3)4(52x3)=0(52x3)(52x64)=0(52x3)(52x10)=0(52x3)=0 or (52x10)=052x=3 or 52x=10log552x=log53 or log552x=log5102x=log53 or 2x=log510x=12log53 or x=12log510x=log5312 or x=log51012x=log53 or x=log510(5^{2x}-6)² -(5^{2x}-6)-12=0\\ (5^{2x}-6)²+3(5^{2x}-6)-4(5^{2x}-6)-12=0\\ (5^{2x}-6)((5^{2x}-6)+3)-4((5^{2x}-6)+3)=0\\ (5^{2x}-6)(5^{2x}-3)-4(5^{2x}-3)=0\\ (5^{2x}-3)(5^{2x}-6-4)=0\\ (5^{2x}-3)(5^{2x}-10)=0\\ (5^{2x}-3)=0 \textsf{ or }(5^{2x}-10)=0\\ 5^{2x}=3 \textsf{ or } 5^{2x}=10\\ \log_5{5^{2x}}=\log_5{3} \textsf{ or } \log_5{5^{2x}}=\log_5{10}\\ 2x=\log_5{3} \textsf{ or } 2x=\log_5{10}\\ x=\frac{1}2\log_5{3} \textsf{ or } x=\frac{1}2\log_5{10}\\ x=\log_5{3}^{\frac{1}2} \textsf{ or } x=\log_5{10}^{\frac{1}2}\\ x=\log_5\sqrt{3} \textsf{ or } x= \log_5\sqrt{10}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS