Determine the roots of the function f(x) = (5^(2x) − 6)^2 − (5^(2x) − 6) − 12
1
Expert's answer
2020-11-16T16:12:15-0500
The roots of the function f(x) are all values of x for which f(x)=0
(52x−6)2−(52x−6)−12=0(52x−6)2+3(52x−6)−4(52x−6)−12=0(52x−6)((52x−6)+3)−4((52x−6)+3)=0(52x−6)(52x−3)−4(52x−3)=0(52x−3)(52x−6−4)=0(52x−3)(52x−10)=0(52x−3)=0 or (52x−10)=052x=3 or 52x=10log552x=log53 or log552x=log5102x=log53 or 2x=log510x=21log53 or x=21log510x=log5321 or x=log51021x=log53 or x=log510
Comments