Question #144240

You have given a function λ : R → R with the following properties (x ∈ R, n ∈ N):

λ(n) = 0 , λ(x + 1) = λ(x) , λ (n +1/2)=1

Find two functions p, q : R → R with q(x) not equal to 0 for all x such that λ(x) = q(x)(p(x) + 1). 


1
Expert's answer
2020-11-17T07:03:54-0500
q(x)0,xRq(x)\not=0, x\in \R

Then for nNn\in \N


λ(n)=q(n)(p(n)+1)=0=>\lambda(n)=q(n)(p(n)+1)=0=>

=>p(n)+1=0=>p(n)=1=>p(n)+1=0=>p(n)=-1

Let q(x)=1,xR.q(x)=1,x\in \R.

Let p(x)=sin(πx)1p(x)=|\sin(\pi x)|-1

Then


λ(x)=1(sin(πx)1+1)\lambda(x)=1\cdot(|\sin(\pi x)|-1+1)

λ(x)=sin(πx)\lambda(x)=|\sin(\pi x)|

Check


λ(x+1)=sin(π(x+1))=sin(πx)=\lambda(x+1)=|\sin(\pi(x+1))|=|-\sin(\pi x)|=

=sin(πx)=λ(x),xR=|\sin(\pi x)|=\lambda(x), x\in\R


λ(n)=sin(π(n))=0,nN\lambda(n)=|\sin(\pi(n))|=0, n\in\N

λ(n+12)=sin(π(n+12))=sin(π2)=1,nN\lambda(n+\dfrac{1}{2})=|\sin(\pi(n+\dfrac{1}{2} ))|=\sin(\dfrac{\pi}{2})=1, n\in\N

λ(x)=q(x)(p(x)+1)=1(sin(πx)1+1)\lambda(x)=q(x)(p(x)+1)=1\cdot(|\sin(\pi x)|-1+1)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS