Question #144017
An airplane is descending in preparation for a landing at an airport. The height, h, in meters of the airplane above the ground level of the airport is a linear function of time, t, where t is the number of minutes after the plane started to descend. The plane was 3,915 meters above the ground level of the airport 2 minutes into the plane's decent and was 2,025 meters above after 9 minutes. How long will it take the plane to land at the airport after it started to descend
1
Expert's answer
2020-11-12T19:33:04-0500
SolutionSolution

After it started to descend, it took the plane exactly 7 minutes7\ minutes to descend from 3915 meters3915\ meters to 2025 meters2025\ meters

Initial Height (H0) = 3915 mFinal Height (H1) = 2025 mDisplacement = δH=1890mChange in time = δt = 92=7 minutes × 60 = 420 sInitial\ Height\ (H_0)\ =\ 3915\ m\\ Final\ Height\ (H_1)\ =\ 2025\ m\\ Displacement\ =\ \delta H=1890m\\ Change\ in\ time\ =\ \delta t\ =\ 9-2=7\ minutes\ \times\ 60\ =\ 420\ s\\

Now, we will calculate the velocity, vˉ\bar v


vˉ=δHδt=1890m420s=4.5ms1\bar v=\frac{\delta H}{\delta t}= \frac{1890m}{420s}=4.5ms^{-1}

Given vˉ=4.5ms1\bar v=4.5ms^{-1}

Initial Height (H0) = 2025 mFinal Height (H1) = 0 mDisplacement = δH=2025 mInitial\ Height\ (H_0)\ =\ 2025\ m\\ Final\ Height\ (H_1)\ =\ 0\ m\\ Displacement\ =\ \delta H=2025\ m \\

4.5 ms1 δt=2025 mδt = 2025 m4.5ms1=450 seconds4.5\ ms^{-1}\ \delta t=2025\ m\\ \delta t\ =\ \frac{2025\ m}{4.5 ms^{-1}}=450\ seconds


Total time it took the plane to land from the time it started to descend.

Total time = (420+450)s=870 seconds(420 + 450)s=870\ seconds


T=14.5 seconds\therefore T=14.5 \ seconds




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS