Question #137871
White gold" alloy contains 90% gold and 10% silver. \Red gold" alloy contains 80% gold and 20% copper. How much \white gold" and how much \red gold" should we add to 60g of the alloy containing 45% gold, 50% silver and 5% copper, in order to obtain alloy with 70% gold, 15% silver and 15% copper concentration?
1
Expert's answer
2020-10-12T15:14:32-0400

Let White gold = W

Let Red gold = R

Let gold = g

Let silver = s

Let copper = c


\therefore W = 0.9g + 0.1s

\therefore R = 0.8g + 0.2c


xg(W)+yg(R)+60g(0.45g+0.5s+0.05c)=(x+y+60)g×(0.7g+0.15s+0.15c)xg(W) + yg(R) + 60g(0.45g+0.5s+0.05c) = (x+y+60)g\times(0.7g+0.15s+0.15c)

where x = mass of White gold; and

where y = mass of Red gold


x(0.9g+0.1s)+y(0.8g+0.2c)+60(0.45g+0.5s+0.05c)=(x+y+60)(0.7g+0.15s+0.15c)x(0.9g+0.1s) + y(0.8g+0.2c) +60(0.45g+0.5s+0.05c) = (x+y+60)(0.7g+0.15s+0.15c)


0.9gx+0.1sx+0.8gy+0.2cy+27g+30s+3c=0.7gx+0.7gy+42g+0.15sx+0.15sy+9s+0.15cx+0.15cy+9c0.9gx + 0.1sx + 0.8gy + 0.2cy + 27g + 30s + 3c = 0.7gx + 0.7gy + 42g + 0.15sx + 0.15sy + 9s + 0.15cx + 0.15cy + 9c


collecting like terms;

0.9gx+0.8gy+27g+0.1sx+30s+0.2cy+3c=0.7gx+0.7gy+42g+0.15sx+0.15sy+9s+0.15cx+0.15cy+9c0.9gx + 0.8gy + 27g + 0.1sx + 30s + 0.2cy + 3c = 0.7gx + 0.7gy + 42g + 0.15sx + 0.15sy + 9s + 0.15cx + 0.15cy + 9c


g(0.9x+0.8y+27)+s(0.1x+30)+c(0.2y+3)=g(0.7x+0.7y+42)+s(0.15x+0.15y+9)+c(0.15x+0.15y+9)g(0.9x + 0.8y + 27) + s(0.1x + 30) + c(0.2y + 3) = g(0.7x + 0.7y +42) +s(0.15x + 0.15y + 9) + c(0.15x +0.15y +9)


Comparing both sides

Firstly;

g(0.9x+0.8y+27)=g(0.7x+0.7y+42)g(0.9x + 0.8y + 27) = g( 0.7x + 0.7y + 42)

0.9x+0.8y+27=0.7x+0.7y+420.9x + 0.8y + 27 = 0.7x + 0.7y + 42

0.2x+0.1y=150.2x + 0.1y = 15 (×10)(\times10)

2x+y=1502x + y = 150 ---------(i)


Secondly;

s(0.1x+30)=s(0.15x+0.15y+9)s(0.1x + 30) = s(0.15x + 0.15y +9)

0.1x+30=0.15x+0.15y+90.1x + 30 = 0.15x + 0.15y +9

0.05x0.15y=21-0.05x - 0.15y = -21 (×20)(\times-20)

x+3y=420x + 3y = 420 ---------(ii)


Thirdly;

c(0.2y+3)=c(0.15x+0.15y+9)c(0.2y + 3) = c(0.15x + 0.15y +9)

0.2y+3=0.15x+0.15y+90.2y + 3 = 0.15x + 0.15y +9

0.05y0.15x=60.05y - 0.15x = 6 (×20)(\times-20)

y3x=120y - 3x = 120 ---------(iii)


Making equation (i) and equation (iii) into simultaneous equations

2x+y=1502x + y = 150 ---------(i)

y3x=120y - 3x = 120 ---------(iii)

Subtracting equation (ii) from equation (i)

2x(3x)+yy=1501202x-(-3x) +y -y = 150 -120

5x=305x = 30

x=6\therefore x = 6


Substituting the value of x into equation (ii)

y3x=120y - 3x = 120

y=120+3xy = 120 + 3x

y=120+3(6)y = 120 + 3(6)

y=138y = 138


\therefore 6g of White gold and 138g of Red gold should be added



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS