Let White gold = W
Let Red gold = R
Let gold = g
Let silver = s
Let copper = c
∴ W = 0.9g + 0.1s
∴ R = 0.8g + 0.2c
xg(W)+yg(R)+60g(0.45g+0.5s+0.05c)=(x+y+60)g×(0.7g+0.15s+0.15c)
where x = mass of White gold; and
where y = mass of Red gold
x(0.9g+0.1s)+y(0.8g+0.2c)+60(0.45g+0.5s+0.05c)=(x+y+60)(0.7g+0.15s+0.15c)
0.9gx+0.1sx+0.8gy+0.2cy+27g+30s+3c=0.7gx+0.7gy+42g+0.15sx+0.15sy+9s+0.15cx+0.15cy+9c
collecting like terms;
0.9gx+0.8gy+27g+0.1sx+30s+0.2cy+3c=0.7gx+0.7gy+42g+0.15sx+0.15sy+9s+0.15cx+0.15cy+9c
g(0.9x+0.8y+27)+s(0.1x+30)+c(0.2y+3)=g(0.7x+0.7y+42)+s(0.15x+0.15y+9)+c(0.15x+0.15y+9)
Comparing both sides
Firstly;
g(0.9x+0.8y+27)=g(0.7x+0.7y+42)
0.9x+0.8y+27=0.7x+0.7y+42
0.2x+0.1y=15 (×10)
2x+y=150 ---------(i)
Secondly;
s(0.1x+30)=s(0.15x+0.15y+9)
0.1x+30=0.15x+0.15y+9
−0.05x−0.15y=−21 (×−20)
x+3y=420 ---------(ii)
Thirdly;
c(0.2y+3)=c(0.15x+0.15y+9)
0.2y+3=0.15x+0.15y+9
0.05y−0.15x=6 (×−20)
y−3x=120 ---------(iii)
Making equation (i) and equation (iii) into simultaneous equations
2x+y=150 ---------(i)
y−3x=120 ---------(iii)
Subtracting equation (ii) from equation (i)
2x−(−3x)+y−y=150−120
5x=30
∴x=6
Substituting the value of x into equation (ii)
y−3x=120
y=120+3x
y=120+3(6)
y=138
∴ 6g of White gold and 138g of Red gold should be added
Comments