Question #137496
There is one and only one complex cube root of 1.
True or false with correct explanation
1
Expert's answer
2020-10-12T05:41:38-0400

False.


There are three complex cube roots of 1.


1>01>0 so we can find these cube roots:

x1=1=1x_1=\sqrt{1}=1

x2=1(12+32i)=12+32ix_2=\sqrt{1}*(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i

x3=1(1232i)=1232ix_3=\sqrt{1}*(-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i)=-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i

where

1=1\sqrt{1}=1 is a simple cube root of 1.


(1)3=1(\sqrt{1})^3=1

(12+32i)2=32i24(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)^2=\dfrac{\sqrt{3}}{2}i-\dfrac{2}{4}

(12+32i)(32i24)=1(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)*(\dfrac{\sqrt{3}}{2}i-\dfrac{2}{4})=1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS