False.
There are three complex cube roots of 1.
1 > 0 1>0 1 > 0 so we can find these cube roots:
x 1 = 1 = 1 x_1=\sqrt{1}=1 x 1 = 1 = 1
x 2 = 1 ∗ ( − 1 2 + 3 2 i ) = − 1 2 + 3 2 i x_2=\sqrt{1}*(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i x 2 = 1 ∗ ( − 2 1 + 2 3 i ) = − 2 1 + 2 3 i
x 3 = 1 ∗ ( − 1 2 − 3 2 i ) = − 1 2 − 3 2 i x_3=\sqrt{1}*(-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i)=-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i x 3 = 1 ∗ ( − 2 1 − 2 3 i ) = − 2 1 − 2 3 i
where
1 = 1 \sqrt{1}=1 1 = 1 is a simple cube root of 1.
( 1 ) 3 = 1 (\sqrt{1})^3=1 ( 1 ) 3 = 1
( − 1 2 + 3 2 i ) 2 = 3 2 i − 2 4 (-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)^2=\dfrac{\sqrt{3}}{2}i-\dfrac{2}{4} ( − 2 1 + 2 3 i ) 2 = 2 3 i − 4 2
( − 1 2 + 3 2 i ) ∗ ( 3 2 i − 2 4 ) = 1 (-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)*(\dfrac{\sqrt{3}}{2}i-\dfrac{2}{4})=1 ( − 2 1 + 2 3 i ) ∗ ( 2 3 i − 4 2 ) = 1
Comments