False.
There are three complex cube roots of 1.
1>01>01>0 so we can find these cube roots:
x1=1=1x_1=\sqrt{1}=1x1=1=1
x2=1∗(−12+32i)=−12+32ix_2=\sqrt{1}*(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}ix2=1∗(−21+23i)=−21+23i
x3=1∗(−12−32i)=−12−32ix_3=\sqrt{1}*(-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i)=-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}ix3=1∗(−21−23i)=−21−23i
where
1=1\sqrt{1}=11=1 is a simple cube root of 1.
(1)3=1(\sqrt{1})^3=1(1)3=1
(−12+32i)2=32i−24(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)^2=\dfrac{\sqrt{3}}{2}i-\dfrac{2}{4}(−21+23i)2=23i−42
(−12+32i)∗(32i−24)=1(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)*(\dfrac{\sqrt{3}}{2}i-\dfrac{2}{4})=1(−21+23i)∗(23i−42)=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments