False.
There are three complex cube roots of 1.
"1>0" so we can find these cube roots:
"x_1=\\sqrt{1}=1"
"x_2=\\sqrt{1}*(-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}}{2}i)=-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}}{2}i"
"x_3=\\sqrt{1}*(-\\dfrac{1}{2}-\\dfrac{\\sqrt{3}}{2}i)=-\\dfrac{1}{2}-\\dfrac{\\sqrt{3}}{2}i"
where
"\\sqrt{1}=1" is a simple cube root of 1.
"(\\sqrt{1})^3=1"
"(-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}}{2}i)^2=\\dfrac{\\sqrt{3}}{2}i-\\dfrac{2}{4}"
"(-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}}{2}i)*(\\dfrac{\\sqrt{3}}{2}i-\\dfrac{2}{4})=1"
Comments
Leave a comment