e x + x = 4 e^x +x = 4 e x + x = 4
Now we write this in a Lamber form i.e.
1 = ( 4 − x ) . e − x 1 = (4-x) . e^{-x} 1 = ( 4 − x ) . e − x
Rewrite this introducing u i.e.
let u = 4 − x u = 4 - x u = 4 − x such that;
x = − u + 4 x = -u +4 x = − u + 4
Replacing this back into the Lambert form, we have;
1 = ( 4 − ( − u + 4 ) ) . e − ( − u + 4 ) 1 = (4 - (-u+4)) . e^{-(-u+4)} 1 = ( 4 − ( − u + 4 )) . e − ( − u + 4 )
1 = ( 4 + u − 4 ) . e u − 4 1= (\cancel{4} + u - \cancel{4}) .e^{u-4} 1 = ( 4 + u − 4 ) . e u − 4
1 = u . e u − 4 1 = u.e^{u-4} 1 = u . e u − 4 Rewrite this again in lambert form;
u . e u = e 4 u.e^u = e^4 u . e u = e 4 Solving this, we have;
u . e u = e 4 ⇒ u = W n ( e 4 ) u.e^u = e^4 ⇒ u = W_n (e^4) u . e u = e 4 ⇒ u = W n ( e 4 )
Where W is the Lambert function called the Omega constant
Now substituting this back to u = − x + 4 u = - x +4 u = − x + 4 and solving for x x x ;
⇒ − x + 4 = W n ( e 4 ) ⇒ -x +4 = W_n (e^4) ⇒ − x + 4 = W n ( e 4 )
∴ x = − W n ( e 4 ) + 4 , \therefore x = - W_n (e^4) +4, ∴ x = − W n ( e 4 ) + 4 , n ∈ Z n\isin \Z n ∈ Z
Comments