ex+x=4e^x +x = 4ex+x=4
Now we write this in a Lamber form i.e.
1=(4−x).e−x1 = (4-x) . e^{-x}1=(4−x).e−x
Rewrite this introducing u i.e.
let u=4−xu = 4 - xu=4−x such that;
x=−u+4x = -u +4x=−u+4
Replacing this back into the Lambert form, we have;
1=(4−(−u+4)).e−(−u+4)1 = (4 - (-u+4)) . e^{-(-u+4)}1=(4−(−u+4)).e−(−u+4)
1=(4+u−4).eu−41= (\cancel{4} + u - \cancel{4}) .e^{u-4}1=(4+u−4).eu−4
1=u.eu−41 = u.e^{u-4}1=u.eu−4 Rewrite this again in lambert form;
u.eu=e4u.e^u = e^4u.eu=e4 Solving this, we have;
u.eu=e4⇒u=Wn(e4)u.e^u = e^4 ⇒ u = W_n (e^4)u.eu=e4⇒u=Wn(e4)
Where W is the Lambert function called the Omega constant
Now substituting this back to u=−x+4u = - x +4u=−x+4 and solving for xxx ;
⇒−x+4=Wn(e4)⇒ -x +4 = W_n (e^4)⇒−x+4=Wn(e4)
∴x=−Wn(e4)+4,\therefore x = - W_n (e^4) +4,∴x=−Wn(e4)+4, n∈Zn\isin \Zn∈Z
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments