Step 1. Prove the result is true for n=3:
Left Side: (n+1)2 Right Side: 2⋅n2
Left Side: (3+1)2 Right Side: 2⋅32
Left Side: 42 Right Side: 2⋅9
Left Side: 16 Right Side: 18
Left Side < Right Side
Hence the result is true for n=3.
Step 2. Assume the result is true for n=k, where k is a positive integer ⩾3:
(k+1)2<2k2
Step 3. Prove the result is true for n=k+1:
(k+1+1)2<2⋅(k+1)2
(k+2)2<2⋅(k+1)2
k2+4k+4<2⋅(k2+2k+1)
k2+4k+4<2k2+4k+2
2<k2 by k⩾3
So, (k+1+1)2<2⋅(k+1)2 holds by n=k+1, therefore
(n+1)2<2n2 is true for n⩾3.
Comments