Question #135852
using mathematical induction prove that (n+1)^2<2n^2 for all natural numbers n=3 or greater than 3
1
Expert's answer
2020-09-30T20:08:47-0400

Step 1. Prove the result is true for n=3n=3:

Left Side: (n+1)2(n+1)^2 Right Side: 2n22⋅n^2

Left Side: (3+1)2(3+1)^2 Right Side: 2322⋅3^2

Left Side: 424^2 Right Side: 292⋅9

Left Side: 1616 Right Side: 1818

Left Side << Right Side

Hence the result is true for n=3n=3.

Step 2. Assume the result is true for n=kn=k, where kk is a positive integer 3\geqslant3:

(k+1)2<2k2(k+1)^2<2k^2

Step 3. Prove the result is true for n=k+1n=k+1:

(k+1+1)2<2(k+1)2(k+1+1)^2<2⋅(k+1)^2

(k+2)2<2(k+1)2(k+2)^2<2⋅(k+1)^2

k2+4k+4<2(k2+2k+1)k^2+4k+4<2⋅(k^2+2k+1)

k2+4k+4<2k2+4k+2k^2+4k+4<2k^2+4k+2

2<k22<k^2 by k3k\geqslant3

So, (k+1+1)2<2(k+1)2(k+1+1)^2<2⋅(k+1)^2 holds by n=k+1n=k+1, therefore

(n+1)2<2n2(n+1)^2<2n^2 is true for n3n\geqslant3.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS