Step 1. Prove the result is true for "n=3":
Left Side: "(n+1)^2" Right Side: "2\u22c5n^2"
Left Side: "(3+1)^2" Right Side: "2\u22c53^2"
Left Side: "4^2" Right Side: "2\u22c59"
Left Side: "16" Right Side: "18"
Left Side "<" Right Side
Hence the result is true for "n=3".
Step 2. Assume the result is true for "n=k", where "k" is a positive integer "\\geqslant3":
"(k+1)^2<2k^2"
Step 3. Prove the result is true for "n=k+1":
"(k+1+1)^2<2\u22c5(k+1)^2"
"(k+2)^2<2\u22c5(k+1)^2"
"k^2+4k+4<2\u22c5(k^2+2k+1)"
"k^2+4k+4<2k^2+4k+2"
"2<k^2" by "k\\geqslant3"
So, "(k+1+1)^2<2\u22c5(k+1)^2" holds by "n=k+1", therefore
"(n+1)^2<2n^2" is true for "n\\geqslant3".
Comments
Leave a comment