Question #134433
write the equation that has the listed conditions

Contains a y-intercept of 6 and has a slope of 10

And

Contains a y-intercept of -11 and is perpendicular to 5
1
Expert's answer
2020-09-22T16:12:13-0400

(1)y=mx+cis the equation of astraight line in the gradient(slope) - intercept formy-intercept of6means atx=0,y=6.y=mx+c,m=6(isgiven)atx=0,y=6y=6=m(0)+c,c=6.y=10x+6is the required equation(2)Similarly,c=11But, since the line is perpendicularto a line whose gradient is 5, therefore,we must apply the condition of perpendicularity.That is, the product of the twogradients is equal to1.m=15y=15x11(1) \hspace{0.1cm}y = mx + c \hspace{0.1cm} \textsf{is the equation of a}\\\textsf{straight line in the gradient(slope) - intercept form}\\ \textsf{y-intercept of}\hspace{0.1cm}6\hspace{0.1cm}\textsf{means at}\hspace{0.1cm} x = 0, y = 6. \\ y = mx + c, m = 6 \hspace{0.1cm}(is \hspace{0.1cm}given)\\ \textsf{at}\hspace{0.1cm} x = 0, y = 6 \\ \Rightarrow y = 6 = m(0) + c, c = 6.\\ \therefore y = 10x + 6\hspace{0.1cm} \textsf{is the required equation}\\ (2) \hspace{0.1cm}\textsf{Similarly,}\hspace{0.1cm} c = -11\\ \textsf{But, since the line is perpendicular}\\\textsf{to a line whose gradient is 5, therefore,}\\\textsf{we must apply the condition of perpendicularity.}\\\textsf{That is, the product of the two}\\\textsf{gradients is equal to}\hspace{0.1cm} -1.\\ \therefore m = -\frac{1}{5}\\\Rightarrow y = -\frac{1}{5}x - 11


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS