Question #134287
Please help !
if f(x)=1-x/1+x
then
f(-x)=? f(x+1)=? f(x)+1=? f(1/x)=? 1/f(x)=?
1
Expert's answer
2020-09-22T13:36:48-0400

Given : f(x)=1x1+x\mathbf{f(x)=\dfrac{1-x}{1+x}}


  1. for  f(x)  ,replace  x  by  (x)  in  f(x),  thenfor\;f(-x)\; ,replace\;x\;by\;(-x)\;in\;f(x),\;then


f(x)=1(x)1+(x)=1+x1x\mathbf{f(-x)=\dfrac{1-(-x)}{1+(-x)}=\dfrac{1+x}{1-x}}


2.  for  f(x+1)  ,replace  x  by  (x+1)  in  f(x),  then\;for\;f(x+1)\;,replace\;x\;by\;(x+1)\;in\;f(x),\;then


f(x+1)=1(x+1)1+(x+1)=1x11+x+1=x2+x\mathbf{f(x+1)=\dfrac{1-(x+1)}{1+(x+1)}=\dfrac{1-x-1}{1+x+1}=\dfrac{-x}{2+x}}


3.  for  f(x)+1,  we  have\;for\;f(x)+1,\;we\;have-


f(x)+1=1x1+x+1=1x+(1+x)1+x=21+x\mathbf{f(x)+1=\dfrac{1-x}{1+x}+1=\dfrac{1-x+(1+x)}{1+x}=\dfrac{2}{1+x}}


4.  \; for  f(1/x)  ,replace  x  by  (1/x)  in  f(x),  thenfor\;f(1/x)\; ,replace\;x\;by\;(1/x)\;in\;f(x),\;then


f(1/x)=11x1+1x=x1xx+1x=x1x+1\mathbf{f(1/x)=\dfrac{1-\dfrac{1}{x}}{1+\dfrac{1}{x}}=\dfrac{\dfrac{x-1}{x}}{\dfrac{x+1}{x}}=\dfrac{x-1}{x+1}}


5.    for  1/f(x),  we  have\;\;for\;1/f(x),\;we\;have-


1f(x)=11x1+x=1+x1x\mathbf{\dfrac{1}{f(x)}=\dfrac{1}{\dfrac{1-x}{1+x}}=\dfrac{1+x}{1-x}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS