Let us write the equations of motion:
x=v0cosαt,y=y0+v0sinαt−2gt2.
So, t=v0cosαx,y=y0+xtanα−2v02cos2αgx2 .
The last equation is an equation of a parabola.
When x = 90, y = 0, when x = 0, y = 70, and the ordinate of a vertex is 100.
So, y=70+xtanα−v02cos2α5x2 .
0=70+90tanα−v02cos2α5⋅902 (1)
The abscissa of a vertex is x0=−−2v02cos2α5tanα=10v02cos2αtanα. And 100=70+10v02cos2αtanαtanα−20v02cos2αtan2α=70+20v02cos2αtan2α. (2)
Therefore, (1) 0=7+9tanα−v02cos2α5⋅810.
(2) 30=20v02cos2αtan2α⇒v02=cos2αtan2α600
(1) 0=7+9tanα−600cos2α5cos2αtan2α⋅810,0=7+9tanα−427tan2α.
tanα≈1.88,α≈62∘.
v0≈ 27.7 m/s.
Comments