Question #133242
A ball is thrown from a cliff the cliff is 70 m high the ball reaches a maximum height of 100 m it reaches the ground at a .90 m from where it started
1
Expert's answer
2020-09-15T17:23:58-0400

Let us write the equations of motion:

x=v0cosαt,    y=y0+v0sinαtgt22.x = v_0\cos\alpha t, \;\; y = y_0 + v_0\sin\alpha t - \dfrac{gt^2}{2}.

So, t=xv0cosα,    y=y0+xtanαg2v02cos2αx2t = \dfrac{x}{v_0\cos\alpha}, \;\; y = y_0 + x\tan\alpha - \dfrac{g}{2v_0^2\cos^2\alpha}x^2 .

The last equation is an equation of a parabola.

When x = 90, y = 0, when x = 0, y = 70, and the ordinate of a vertex is 100.

So, y=70+xtanα5v02cos2αx2y = 70 + x\tan\alpha - \dfrac{5}{v_0^2\cos^2\alpha}x^2 .

0=70+90tanα5v02cos2α9020 = 70 +90\tan\alpha - \dfrac{5}{v_0^2\cos^2\alpha}\cdot90^2 (1)

The abscissa of a vertex is x0=tanα25v02cos2α=v02cos2αtanα10.x_0 = -\dfrac{\tan\alpha}{-2\frac{5}{v_0^2\cos^2\alpha}} = \dfrac{v_0^2\cos^2\alpha\tan\alpha}{10}. And 100=70+v02cos2αtanα10tanαv02cos2αtan2α20=70+v02cos2αtan2α20.100 = 70 + \dfrac{v_0^2\cos^2\alpha\tan\alpha}{10}\tan\alpha - \dfrac{v_0^2\cos^2\alpha\tan^2\alpha}{20} = 70 + \dfrac{v_0^2\cos^2\alpha\tan^2\alpha}{20} . (2)


Therefore, (1) 0=7+9tanα5v02cos2α810.0 = 7 +9\tan\alpha - \dfrac{5}{v_0^2\cos^2\alpha}\cdot810.

(2) 30=v02cos2αtan2α20v02=600cos2αtan2α30 = \dfrac{v_0^2\cos^2\alpha\tan^2\alpha}{20} \Rightarrow v_0^2 = \dfrac{600}{\cos^2\alpha\tan^2\alpha}


(1) 0=7+9tanα5cos2αtan2α600cos2α810,    0=7+9tanα274tan2α.0 = 7 +9\tan\alpha - \dfrac{5\cos^2\alpha\tan^2\alpha}{600\cos^2\alpha}\cdot810, \;\; 0 = 7+9\tan\alpha - \dfrac{27}{4}\tan^2\alpha.

tanα1.88,α62.\tan\alpha \approx 1.88, \alpha \approx 62^\circ.

v0v_0\approx 27.7 m/s.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS