Let us write the equations of motion:
"x = v_0\\cos\\alpha t, \\;\\; y = y_0 + v_0\\sin\\alpha t - \\dfrac{gt^2}{2}."
So, "t = \\dfrac{x}{v_0\\cos\\alpha}, \\;\\; y = y_0 + x\\tan\\alpha - \\dfrac{g}{2v_0^2\\cos^2\\alpha}x^2" .
The last equation is an equation of a parabola.
When x = 90, y = 0, when x = 0, y = 70, and the ordinate of a vertex is 100.
So, "y = 70 + x\\tan\\alpha - \\dfrac{5}{v_0^2\\cos^2\\alpha}x^2" .
"0 = 70 +90\\tan\\alpha - \\dfrac{5}{v_0^2\\cos^2\\alpha}\\cdot90^2" (1)
The abscissa of a vertex is "x_0 = -\\dfrac{\\tan\\alpha}{-2\\frac{5}{v_0^2\\cos^2\\alpha}} = \\dfrac{v_0^2\\cos^2\\alpha\\tan\\alpha}{10}." And "100 = 70 + \\dfrac{v_0^2\\cos^2\\alpha\\tan\\alpha}{10}\\tan\\alpha - \\dfrac{v_0^2\\cos^2\\alpha\\tan^2\\alpha}{20} = 70 + \\dfrac{v_0^2\\cos^2\\alpha\\tan^2\\alpha}{20} ." (2)
Therefore, (1) "0 = 7 +9\\tan\\alpha - \\dfrac{5}{v_0^2\\cos^2\\alpha}\\cdot810."
(2) "30 = \\dfrac{v_0^2\\cos^2\\alpha\\tan^2\\alpha}{20} \\Rightarrow v_0^2 = \\dfrac{600}{\\cos^2\\alpha\\tan^2\\alpha}"
(1) "0 = 7 +9\\tan\\alpha - \\dfrac{5\\cos^2\\alpha\\tan^2\\alpha}{600\\cos^2\\alpha}\\cdot810, \\;\\;\n0 = 7+9\\tan\\alpha - \\dfrac{27}{4}\\tan^2\\alpha."
"\\tan\\alpha \\approx 1.88, \\alpha \\approx 62^\\circ."
"v_0\\approx" 27.7 m/s.
Comments
Leave a comment