Solve the equation; x2 - 8x + 7 = 0 using the Quadratic Formula
Solutions of the quadratic equation
. ax2+bx+c=0, a≠0 are−x=−b±b2−4ac2aHere,we need to solve−x2−8x+7=0i.e.,a=1,b=−8,c=7so,x=−(−8)±(−8)2−4(1)(7)2(1) ⟹ x=8±64−282ax^{2}+bx+c=0,\; a\neq0\;\;are- \\ \\ x =\dfrac{-b \plusmn \sqrt{b^2-4ac}}{2a} \\ \\ Here, we\:need\:to\:solve- \\ x^{2}-8x+7=0 \\ i.e., a=1, b=-8,c=7 \\ so, x=\dfrac{-(-8)\plusmn\sqrt{(-8)^{2}-4(1)(7)}}{2(1)} \\ \implies x = \dfrac{8 \plusmn \sqrt{64-28}}{2}ax2+bx+c=0,a=0are−x=2a−b±b2−4acHere,weneedtosolve−x2−8x+7=0i.e.,a=1,b=−8,c=7so,x=2(1)−(−8)±(−8)2−4(1)(7)⟹x=28±64−28
⟹ x=8±62=7,1\implies x = \dfrac{8 \plusmn 6}{2} =7,1⟹x=28±6=7,1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments