2020-07-01T16:19:48-04:00
If F(x)=√3x+2 find (a) f(a+h) -f(a) over h
(b) if F:x mapping x^2 over 1+x^2 find f(x2)- f(x1)
1
2020-07-02T19:18:01-0400
(a)
f ( a + h ) − f ( a ) n = 3 ( a + h ) + 2 − 3 a + 2 h = {f(a+h)-f(a) \over n}={\sqrt{3(a+h)+2}-\sqrt{3a+2} \over h}= n f ( a + h ) − f ( a ) = h 3 ( a + h ) + 2 − 3 a + 2 =
= 3 a + 3 h + 2 − 3 a − 2 h ( 3 ( a + h ) + 2 + 3 a + 2 ) = 3 3 ( a + h ) + 2 + 3 a + 2 ={3a+3h+2-3a-2\over \ h(\sqrt{3(a+h)+2}+\sqrt{3a+2})}={3\over \ \sqrt{3(a+h)+2}+\sqrt{3a+2}} = h ( 3 ( a + h ) + 2 + 3 a + 2 ) 3 a + 3 h + 2 − 3 a − 2 = 3 ( a + h ) + 2 + 3 a + 2 3 (b)
f ( x 2 ) − f ( x 1 ) = x 2 2 x 2 2 + 1 − x 1 2 x 1 2 + 1 = f(x_2)-f(x_1)={x_2^2 \over x_2^2+1}-{x_1^2 \over x_1^2+1}= f ( x 2 ) − f ( x 1 ) = x 2 2 + 1 x 2 2 − x 1 2 + 1 x 1 2 =
= x 2 2 x 1 2 + x 2 2 − x 2 2 x 1 2 − x 1 2 ( x 1 2 + 1 ) ( x 2 2 + 1 ) = x 2 2 − x 1 2 ( x 1 2 + 1 ) ( x 2 2 + 1 ) = ={x_2^2x_1^2+x_2^2-x_2^2x_1^2-x_1^2 \over (x_1^2+1)(x_2^2+1)}={x_2^2-x_1^2 \over (x_1^2+1)(x_2^2+1)}= = ( x 1 2 + 1 ) ( x 2 2 + 1 ) x 2 2 x 1 2 + x 2 2 − x 2 2 x 1 2 − x 1 2 = ( x 1 2 + 1 ) ( x 2 2 + 1 ) x 2 2 − x 1 2 =
= ( x 2 − x 1 ) ( x 2 + x 1 ) ( x 1 2 + 1 ) ( x 2 2 + 1 ) ={(x_2-x_1)(x_2+x_1) \over (x_1^2+1)(x_2^2+1)} = ( x 1 2 + 1 ) ( x 2 2 + 1 ) ( x 2 − x 1 ) ( x 2 + x 1 )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments