Question #124923
If F(x)=√3x+2 find (a) f(a+h) -f(a) over h
(b) if F:x mapping x^2 over 1+x^2 find f(x2)- f(x1)
1
Expert's answer
2020-07-02T19:18:01-0400

(a)

f(a+h)f(a)n=3(a+h)+23a+2h={f(a+h)-f(a) \over n}={\sqrt{3(a+h)+2}-\sqrt{3a+2} \over h}=

=3a+3h+23a2 h(3(a+h)+2+3a+2)=3 3(a+h)+2+3a+2={3a+3h+2-3a-2\over \ h(\sqrt{3(a+h)+2}+\sqrt{3a+2})}={3\over \ \sqrt{3(a+h)+2}+\sqrt{3a+2}}

(b)


f(x2)f(x1)=x22x22+1x12x12+1=f(x_2)-f(x_1)={x_2^2 \over x_2^2+1}-{x_1^2 \over x_1^2+1}=

=x22x12+x22x22x12x12(x12+1)(x22+1)=x22x12(x12+1)(x22+1)=={x_2^2x_1^2+x_2^2-x_2^2x_1^2-x_1^2 \over (x_1^2+1)(x_2^2+1)}={x_2^2-x_1^2 \over (x_1^2+1)(x_2^2+1)}=

=(x2x1)(x2+x1)(x12+1)(x22+1)={(x_2-x_1)(x_2+x_1) \over (x_1^2+1)(x_2^2+1)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS