We have arithmetic sequences.
(i) 9; 14; 19; ...
"a_1=9, a_2=14, a_3=19, a_4=24, a_5=29, ..."
The common difference: "d=a_2-a_1=14-9=5."
The general term: "a_n=a_1+d(n-1)=9+5(n-1)."
(ii) 3; 7; 11; ...
"a_1=3, a_2=7, a_3=11, a_4=15, a_5=19, ..."
The common difference: "d=a_2-a_1=7-3=4."
The general term: "a_n=a_1+d(n-1)=3+4(n-1)."
(iii) 8; 15; 22; ...
"a_1=8, a_2=15, a_3=22, a_4=29, a_5=36, ..."
The common difference: "d=a_2-a_1=15-8=7."
The general term: "a_n=a_1+d(n-1)=8+7(n-1)."
(iv) 4 ; 11; 18; ....
"a_1=4, a_2=11, a_3=18, a_4=25, a_5=32, ..."
The common difference: "d=a_2-a_1=11-4=7."
The general term: "a_n=a_1+d(n-1)=4+7(n-1)."
(v) The number sequence of positive multiples of three starting at six:
6; 9; 12; 15; ...
"a_1=6, a_2=9, a_3=12, a_4=15, a_5=18, ..."
The common difference: "d=a_2-a_1=9-6=3."
The general term: "a_n=a_1+d(n-1)=6+3(n-1)."
Comments
Leave a comment