Question #120590
If f(x)= 5x+3 and gof(x) =12x-5 ,find the inverse of the function g(x)
1
Expert's answer
2020-06-08T19:10:13-0400

First, let us determine the function gg. We know that f(x)=5x+3,    g(f(x))=12x5f(x) = 5x+3, \;\; g(f(x)) = 12x-5 . Therefore, x=f(x)35x = \dfrac{f(x)-3}{5} and g(f(x))=12f(x)355=2.4f(x)12.2.g(f(x)) = 12\cdot\dfrac{f(x)-3}{5}-5 = 2.4f(x) -12.2. So g(x)=2.4x12.2,    x=g(x)+12.22.4g(x) = 2.4x-12.2, \;\; x = \dfrac{g(x)+12.2}{2.4}

The inverse g1(g(x))=x,g^{-1}(g(x)) = x, and g1(y)=y+12.22.4g^{-1}(y) = \dfrac{y+12.2}{2.4} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS