First, let us determine the function ggg. We know that f(x)=5x+3, g(f(x))=12x−5f(x) = 5x+3, \;\; g(f(x)) = 12x-5f(x)=5x+3,g(f(x))=12x−5 . Therefore, x=f(x)−35x = \dfrac{f(x)-3}{5}x=5f(x)−3 and g(f(x))=12⋅f(x)−35−5=2.4f(x)−12.2.g(f(x)) = 12\cdot\dfrac{f(x)-3}{5}-5 = 2.4f(x) -12.2.g(f(x))=12⋅5f(x)−3−5=2.4f(x)−12.2. So g(x)=2.4x−12.2, x=g(x)+12.22.4g(x) = 2.4x-12.2, \;\; x = \dfrac{g(x)+12.2}{2.4}g(x)=2.4x−12.2,x=2.4g(x)+12.2
The inverse g−1(g(x))=x,g^{-1}(g(x)) = x,g−1(g(x))=x, and g−1(y)=y+12.22.4g^{-1}(y) = \dfrac{y+12.2}{2.4}g−1(y)=2.4y+12.2 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments