First, let us determine the function "g". We know that "f(x) = 5x+3, \\;\\; g(f(x)) = 12x-5" . Therefore, "x = \\dfrac{f(x)-3}{5}" and "g(f(x)) = 12\\cdot\\dfrac{f(x)-3}{5}-5 = 2.4f(x) -12.2." So "g(x) = 2.4x-12.2, \\;\\; x = \\dfrac{g(x)+12.2}{2.4}"
The inverse "g^{-1}(g(x)) = x," and "g^{-1}(y) = \\dfrac{y+12.2}{2.4}" .
Comments
Leave a comment