Answer to Question #120102 in Algebra for Vikrant
Solve the following system of linear equations
x+ y- 3z+ 2w = 0
2x -y +2z- 3w =0
3x- 2y+ z -4w =0
-4x +y -3z +w =0
1
2020-06-04T19:35:48-0400
"A=\\begin{pmatrix}\n 1 & 1 & -3 & 2 \\\\\n 2 & -1 & 2 & -3 \\\\\n 3 & -2 & 1 & -4 \\\\\n -4 & 1 & -3 & 1\n\\end{pmatrix}, X=\\begin{pmatrix}\n x \\\\\n y \\\\\n z \\\\\n w \n\\end{pmatrix}, B=\\begin{pmatrix}\n 0 \\\\\n 0 \\\\\n 0 \\\\\n 0 \n\\end{pmatrix}"
"AX=B" "R_2=R_2-(2)R_1"
"\\begin{pmatrix}\n 1 & 1 & -3 & 2 \\\\\n 0 & -3 & 8 & -7 \\\\\n 3 & -2 & 1 & -4 \\\\\n -4 & 1 & -3 & 1\n\\end{pmatrix}" "R_3=R_3-(3)R_1"
"\\begin{pmatrix}\n 1 & 1 & -3 & 2 \\\\\n 0 & -3 & 8 & -7 \\\\\n 0 & -5 & 10 & -10 \\\\\n -4 & 1 & -3 & 1\n\\end{pmatrix}" "R_4=R_4+(4)R_1"
"\\begin{pmatrix}\n 1 & 1 & -3 & 2 \\\\\n 0 & -3 & 8 & -7 \\\\\n 0 & -5 & 10 & -10 \\\\\n 0 & 5 & -15 & 9\n\\end{pmatrix}" "R_2=R_2\/(-3)"
"\\begin{pmatrix}\n 1 & 1 & -3 & 2 \\\\\n 0 &1 & -8\/3 & 7\/3 \\\\\n 0 & -5 & 10 & -10 \\\\\n 0 & 5 & -15 & 9\n\\end{pmatrix}" "R_1=R_1-R_2"
"\\begin{pmatrix}\n 1 & 0 & -1\/3 & -1\/3 \\\\\n 0 & 1 & -8\/3 & 7\/3 \\\\\n 0 & -5 & 10 & -10 \\\\\n 0 & 5 & -15 & 9\n\\end{pmatrix}" "R_3=R_3+(5)R_2"
"\\begin{pmatrix}\n 1 & 0 & -1\/3 & -1\/3 \\\\\n 0 & 1 & -8\/3 & 7\/3 \\\\\n 0 & 0 & -10\/3 & 5\/3 \\\\\n 0 & 5 & -15 & 9\n\\end{pmatrix}" "R_4=R_4-(5)R_2"
"\\begin{pmatrix}\n 1 & 0 & -1\/3 & -1\/3 \\\\\n 0 & 1 & -8\/3 & 7\/3 \\\\\n 0 & 0 & -10\/3 & 5\/3 \\\\\n 0 & 0 & -5\/3 & -8\/3\n\\end{pmatrix}""R_3=(-3\/10)R_3"
"\\begin{pmatrix}\n 1 & 0 & -1\/3 & -1\/3 \\\\\n 0 & 1 & -8\/3 & 7\/3 \\\\\n 0 & 0 & 1 & -1\/2 \\\\\n 0 & 0 & -5\/3 & -8\/3\n\\end{pmatrix}" "R_1=R_1+(1\/3)R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & -1\/2 \\\\\n 0 & 1 & -8\/3 & 7\/3 \\\\\n 0 & 0 & 1 & -1\/2 \\\\\n 0 & 0 & -5\/3 & -8\/3\n\\end{pmatrix}" "R_2=R_2+(8\/3)R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & -1\/2 \\\\\n 0 & 1 & 0 & 1 \\\\\n 0 & 0 & 1 & -1\/2 \\\\\n 0 & 0 & -5\/3 & -8\/3\n\\end{pmatrix}" "R_4=R_4+(5\/3)R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & -1\/2 \\\\\n 0 & 1 & 0 & 1 \\\\\n 0 & 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 & -7\/2\n\\end{pmatrix}" "R_4=(-2\/7)R_4"
"\\begin{pmatrix}\n 1 & 0 & 0 & -1\/2 \\\\\n 0 & 1 & 0 & 1 \\\\\n 0 & 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 & 1\n\\end{pmatrix}" "R_1=R_1+(1\/2)R_4"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 \\\\\n 0 & 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 & 1\n\\end{pmatrix}" "R_2=R_2-R_4"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 & 1\n\\end{pmatrix}" "R_3+R_3+(1\/2)R_4"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 1\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 1\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y \\\\\n z \\\\\n w \n\\end{pmatrix}=\\begin{pmatrix}\n 0 \\\\\n 0 \\\\\n 0 \\\\\n 0 \n\\end{pmatrix}" "x=0"
"y=0"
"z=0"
"w=0"
"(0, 0,0,0)"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment