Question #118478
Find the Cartesian equation of the locus of the point P representing the complex number z. Sketch the locus of P in each case.
1
Expert's answer
2020-05-27T18:50:02-0400

a)

2z+1=z22|z+1|=|z-2|

z=x+iyz=x+iy


4((x+1)2+y2)=(x2)2+y24((x+1)^2+y^2)=(x-2)^2+y^24x2+8x+4+4y2=x24x+4+y24x^2+8x+4+4y^2=x^2-4x+4+y^23x2+12x+3y2=03x^2+12x+3y^2=0x2+4x+44+y2=0x^2+4x+4-4+y^2=0(x+2)2+y2=4(x+2)^2+y^2=4

The equation of the circle with center (2,0)(-2,0) and radius 2.2.


b)


z+iz52i=1|{z+i \over z-5-2i}|=1z+i=z52i,z5+2i|z+i|=|z-5-2i|,z\not=5+2i

z=x+iyz=x+iy


x2+(y+1)2=(x5)2+(y2)2x^2+(y+1)^2=(x-5)^2+(y-2)^2x2+y2+2y+1=x210x+25+y24y+4x^2+y^2+2y+1=x^2-10x+25+y^2-4y+46y=10x+286y=-10x+28

y=53x+143y=-{5 \over 3}x+{14 \over 3}


c)


Im(z+9z)=0Im(z+{9\over z})=0

z=x+iy,z0z=x+iy, z\not=0


x+iy+9x+iy=x+iy+9x2+y2(xiy)x+iy+{9\over x+iy}=x+iy+{9\over x^2+y^2}(x-iy)

y(x2+y2)9y=0y(x^2+y^2)-9y=0

y=0 or x2+y2=9y=0 \ or \ x^2+y^2=9

Real axis or the circle with center (0,0)(0,0) and radius 33 with the exception of point (0,0).(0,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS