We have given that a complex number z satisfy these two equation
∣z−4i∣=∣z+2i∣(1)∣z+3i∣=∣z+5−2i∣(2) Let's assume the solution is z=z0=x0+y0 ,thus equation (1) will be,
∣z0−4i∣=∣z0+2i∣⟹∣z0−4i∣2=∣z0+2i∣2⟹(z0−4i)(z0+4i)=(z0+2i)(z0−2i)(∵∣z∣2=zz)⟹6i(z0−z0)=−12(∵z0=x0+y0)⟹−12y0=−12⟹y0=1 Hence,
z0=x0+i(3) And similarly, from equation (2) we get,
∣z0+3i∣=∣z0+5−2i∣⟹∣(x0+i)+3i∣2=∣(x0+i)+5−2i∣2(∵z0=x0+i)⟹∣x0+4i∣2=∣(x0+5)−i∣2⟹x02+16=(x0+5)2+1⟹10x0=−10⟹x0=−1 Thus,
z0=−1+i Therefore, required complex number
z=z0=−1+i which satisfy the equation (1)&(2). Hence we are done.
Comments