Question #116815
If the roots of the cubic az3 + bz2 + cz + d = 0 form an arithmetic progression α − β,
α, α + β, prove that (2b2 − 9ac)b + 27a2d = 0.
1
Expert's answer
2020-05-19T08:48:03-0400

We are given that az3+bz2+cz+d=0az^3 + bz^2 + cz + d = 0 has three roots in arithmetic progression αβ,α,α+βα − β, α, α + β.

Now, we known as: Sum of roots = b/a-b/a , Product of roots = d/a-d/a and sum of product of two roots = c/ac/a.

So, we got three equations in our problem as:

(αβ)+(α)+(α+β)=ba(αβ)(α)(α+β)=da(αβ)(α)+(α)(α+β)+(αβ)(α+β)=ca(\alpha−\beta)+(\alpha)+(\alpha+\beta)= -\frac{b}{a} \\ (\alpha−\beta)(\alpha)(\alpha+\beta) = -\frac{d}{a} \\ (\alpha−\beta)(\alpha)+ (\alpha)(\alpha+\beta)+ (\alpha−\beta)(\alpha+\beta) = \frac{c}{a}

So, 3α=ba,α(α2β2)=da3\alpha = -\frac{b}{a}, \alpha(\alpha^2-\beta^2) = -\frac{d}{a} and 3α2β2=ca3\alpha^2-\beta^2 = \frac{c}{a} .


So by first and last equation we got, α=b3a\alpha = -\frac{b}{3a} and β2=b23a2ca\beta^2 = \frac{b^2}{3a^2}-\frac{c}{a}.


Now from middle equation we get,

(b3a)(b29a2b23a2+ca)=da(-\frac{b}{3a})(\frac{b^2}{9a^2} - \frac{b^2}{3a^2} + \frac{c}{a} ) = -\frac{d}{a}

    b(b23b2+9ac)9a2=3d    (2b29ac)b+27a2d=0\implies \frac{b(b^2 - 3b^2 + 9ac )}{9a^2} = 3d \\ \implies (2b^2 - 9ac)b + 27a^2d = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS