Answer to Question #114076 in Algebra for Azwinndini

Question #114076
10.1 Use 9.2 to evaluate sin π/5 , sin 2π/5 and cos π/5 . 10.2 Let z = cos θ + i sin θ. Then zn = cos(nθ) + i sin(nθ) for all n ∈ N (by de Moivre) and z−n = cos(nθ) − i sin(nθ). (a) Show that 2 cos(nθ) = zn + z−n and 2i sin(nθ) = zn − z−n. (2) (b) Show that 2n cosn θ = (z + 1 )n and (2i)n sinn θ = (z − 1 )n. (2) (c) Use (b) to express sin7 θ in terms of multiple angles. (6) (d) Express cos3 θ sin4 θ in terms of multiple angles. (6) (e) Eliminate θ from the equations 4x = cos(3θ) + 3 cos θ; 4y = 3 sin θ − sin(3θ). (5) [30]
1
Expert's answer
2020-05-07T17:59:13-0400

10.1 Let

θ=π10=1805θ=π2cos3θ=sin2θcos540=sin360=sin(900540)4cos3θ3cosθ=2sinθcosθ4cos2θ3=2sinθ4(1sin2θ)3=2sinθ4sin2θ+2sinθ1=0sinθ=514cos2θ=cosπ5=12sin2θ=5+14cosπ5=5+14sinπ5=1cos2θ=1(5+14)2=10254sin2π5=2sinπ5cosπ5=102545+12==10+254\theta = \frac {\pi} {10} = 18 ^ 0\\ 5 \theta = \frac {\pi} {2}\\ \cos3 \theta = \sin2 \theta \\ \cos54 ^ 0 = \sin36 ^ 0 = \sin (90 ^ 0-54 ^ 0) \\ 4 \cos ^ 3 \theta-3 \cos \theta = 2 \sin \theta \cos \theta \\ 4 \cos ^ 2 \theta-3 = 2 \sin \theta \\ 4 (1- \sin ^ 2 \theta) -3 = 2 \sin \theta \\ 4 \sin ^ 2 \theta + 2 \sin \theta-1 = 0 \\ \sin \theta = \frac {\sqrt5-1} {4} \\ \cos2 \theta = \cos \frac {\pi} {5} = 1-2 \sin ^ 2 \theta = \frac {\sqrt5 + 1} {4} \\ \cos \frac {\pi} {5}= \frac {\sqrt5 + 1} {4}\\ \sin \frac {\pi} {5} = \sqrt {1- \cos ^ 2 \theta} = \sqrt {1 - (\frac {\sqrt5 + 1} {4}) ^ 2} = \frac {\sqrt {10-2 \sqrt5}} {4} \\ \sin \frac {2 \pi} {5 } = 2 \sin \frac {\pi} {5} \cos \frac {\pi} {5} = \frac {\sqrt {10-2 \sqrt5}} {4} \frac {\sqrt5 + 1} {2} = \\ = \frac {\sqrt {10 + 2 \sqrt5}} {4}

10.2

z=cosθ+isinθzn=cosnθ+isinnθzn=1cosnθ+isinnθ=cosnθisinnθnN(а)zn+zn=2cosnθznzn=2isinnθz = \cos \theta + i \sin \theta \\ z ^ n = \cos n \theta + i \sin n \theta \\ z ^ {- n} = \frac {1} {\cos n \theta + i \sin n \theta} = \cos n \theta-i \sin n \theta \\ n \in N\\ (а)\\ z ^ n + z ^ {- n} = 2 \cos n \theta \\ z ^ n-z ^ {- n} = 2i \sin n \theta

(b)z=cosθ+isinθ(z+1)n=(cosθ+isinθ+1)n==(2cos2θ2+i2sinθ2cosθ2)n==2ncosnθ2(cosθ2+isinθ2)n==2ncosnθ2(cosnθ2+isinnθ2)==2ncosnθ2zn22ncosnθ2zn2=2ncosnθ(z1)n=(cosθ+isinθ1)n==(2sin2θ2+i2sinθ2cosθ2)n==2nsinnθ2(sinθ2+icosθ2)n==2nsinnθ2(i(cosθ2+isinθ2))n==(2i)nsinnθ2(cosnθ2+isinnθ2)==(2i)nsinnθ2zn2(2i)nsinnθ2zn2=(2i)nsinnθ(b)\\ z = \cos \theta + i \sin \theta \\ (z + 1) ^ n = (\cos \theta + i \sin \theta + 1) ^ n = \\ = (2 \cos ^ 2 \frac {\theta} {2} + i2 \sin \frac {\theta} {2} \cos \frac {\theta} {2}) ^ n = \\ = 2 ^ n \cos ^ n \frac {\theta } {2} (\cos \frac {\theta} {2} + i \sin \frac {\theta} {2}) ^ n = \\ = 2 ^ n \cos ^ n \frac {\theta} { 2} (\cos \frac {n \theta} {2} + i \sin \frac {n \theta} {2}) = \\ = 2 ^ n \cos ^ n \frac {\theta} {2} z ^ {\frac {n} {2}} \\ 2 ^ n \cos ^ n \frac {\theta} {2} z ^ {\frac {n} {2}} = 2 ^ n \cos ^ n \theta \\ \\\\ (z-1) ^ n = (\cos \theta + i \sin \theta-1) ^ n = \\ = (2 \sin ^ 2 \frac {\theta} {2} + i2 \sin \frac { \theta} {2} \cos \frac {\theta} {2}) ^ n = \\ = 2 ^ n \sin ^ n \frac {\theta} {2} (\sin \frac {\theta} { 2} + i \cos \frac {\theta} {2}) ^ n = \\ = 2 ^ n \sin ^ n \frac {\theta} {2} ( i (\cos \frac {\theta} {2} + i \sin \frac {\theta} {2})) ^ n = \\ = (2i) ^ n \sin ^ n \frac {\theta} {2} (\cos \frac {n \theta} {2} + i \sin \frac {n \theta} {2}) = \\ = (2i) ^ n \sin ^ n \frac {\theta} {2} z ^ {\frac {n} {2}} \\ (2i) ^ n \sin ^ n \frac {\theta} {2} z ^ {\frac {n} {2}} = (2i) ^ n \sin ^ n \theta \\

(c)sinθ=zz12isin7θ=(zz1)7(2i)7==1(2i)7(z77z6z1+21z5z235z4z3++35z3z421z2z5+7zz6z7)==1(2i)7(2isin7θ7(2i)sin5θ++21(2i)sin3θ35(2i)sinθ)==1(2i)6(sin7θ7sin5θ+21sin3θ35 sinθ)==164(sin7θ7sin5θ+21sin3θ35 sinθ)(c)\\ \sin \theta = \frac {z-z ^ {- 1}} {2i} \\ \sin ^ 7 \theta = \frac {(z-z ^ {- 1}) ^ 7} {(2i)^7} = \\ = \frac {1} {(2i)^7} (z ^ 7-7z ^ 6z ^ {- 1} + 21z ^ 5z ^ {- 2} -35z ^ 4z ^ {- 3} + \\ + 35z ^ 3z ^ {- 4} - 21z ^ 2z ^ {- 5} + 7zz ^ {- 6} -z ^ {- 7}) = \\ = \frac {1} {(2i)^7} (2i \sin7 \theta-7 \cdot (2i) \sin5 \theta +\\ + 21 \cdot (2i) \sin3 \theta - 35 (2i) \sin \theta) = \\ =\frac{1}{(2i)^6} (\sin7 \theta-7 \sin5 \theta + 21 \sin3 \theta-35 \ sin\theta)=\\ =-\frac{1}{64} (\sin7 \theta-7 \sin5 \theta + 21 \sin3 \theta-35 \ sin\theta)\\

(d)cos3θ=z3+z32=(z+z1)(z2zz1+z2)2==2cosθ(2cos2θ1)2=cosθ(2cos2θ1)sin4θ=z4z42i=(z2+z2)(z2z2)2i=2cos2θ2isin2θ2i==2cos2θsin2θ(d)\\ \cos3 \theta = \frac {z ^ 3 + z ^ {- 3}} {2} = \frac {(z + z ^ {- 1}) (z ^ 2-zz ^ {- 1} + z ^ {-2})} {2} = \\ = \frac {2 \cos \theta (2 \cos2 \theta-1)} {2} = \cos \theta (2 \cos2 \theta-1) \\ \sin4 \theta = \frac {z ^ 4-z ^ {- 4}} {2i} = \frac {(z ^ 2 + z ^ {- 2}) (z ^ 2-z ^ {- 2}) } {2i} = \frac {2 \cos2 \theta2i \sin2 \theta} {2i} = \\ = 2 \cos2 \theta \sin2 \theta

(е)cos3θ=z3+z32=(z+z1)(z2zz1+z2)2==2 cosθ(2cos2θ1)2=cosθ(4cos2θ3)==4cos3θ3cosθ4x=cos3θ+3cosθ4x=4cos3θ3cosθ+3cosθx=cos3θsin3θ=z3z32i=(zz1)(z2+zz1+z2)2i==2isinθ(2cos2θ+1)2i=sinθ(34 sin2θ)=  =3sinθ4sin3θ4y=3sinθsin3θ4y=3sinθ3sinθ+4sin3θy=sin3θ(е)\\ \cos3 \theta = \frac {z ^ 3 + z ^ {- 3}} {2} = \frac {(z + z ^ {- 1}) (z ^ 2-zz ^ {- 1} + z ^ {-2})} {2} = \\ = \frac {2 \ cos\theta (2 \cos2 \theta-1)} {2} = \cos \theta (4 \cos ^ 2 \theta-3) = \\ = 4 \cos ^ 3 \theta-3 \cos \theta \\ 4x = \cos3 \theta + 3 \cos \theta \\ 4x = 4 \cos ^ 3 \theta-3 \cos \theta + 3 \cos \theta \\ x = \cos ^ 3 \theta\\ \sin3 \theta = \frac {z ^ 3-z ^ {- 3}} {2i} = \frac {(zz ^ {- 1}) (z ^ 2 + zz ^ {- 1} + z ^ {- 2})} {2i} = \\ = \frac {2i \sin \theta (2 \cos2 \theta + 1)} {2i} = \sin \theta (3-4 \ sin ^ 2 \theta) = \ \ = 3 \sin \theta-4 \sin ^ 3 \theta \\ 4y = 3 \sin \theta- \sin3 \theta \\ 4y = 3 \sin \theta-3 \sin \theta + 4 \sin ^ 3 \theta \\ y = \sin ^ 3 \theta



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment