Solution (1)
Determinant of matrix P
det (3−1−20)=0−(−1)(−2)=−2det \space \begin{pmatrix}3&-1\\ -2&0\end{pmatrix}=0-(-1)(-2)=-2det (3−2−10)=0−(−1)(−2)=−2
Determinant of matrix Q
det (34 −4x)=3(x)−4(−4)=3x+16det \:\begin{pmatrix}3&4\\ \:\:-4&x\end{pmatrix}=3(x)-4(-4)=3x+16det(3−44x)=3(x)−4(−4)=3x+16
From question |P| = |Q|
⇒−2=3x+16\Rightarrow -2=3x+16⇒−2=3x+16
⇒3x=−18\Rightarrow 3x=-18⇒3x=−18
⇒x=−18/3=−6\Rightarrow x=-18/3 = -6⇒x=−18/3=−6
Solution (2)
5x2−x−45x^2-x-45x2−x−4
=5x2−5x+4x−4=5x^2-5x+4x-4=5x2−5x+4x−4
=5x(x−1)+4(x−1)=5x(x-1)+4(x-1)=5x(x−1)+4(x−1)
=(5x+4)(x−1)=(5x+4)(x-1)=(5x+4)(x−1)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments