from here
"z_0=\\sqrt[6]{7}(cos\u2061(\u03c0\/6)+i sin\u2061(\u03c0\/6))=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i\\\\" ;
"z_1=\\sqrt[6]{7}(cos\u2061(\u03c0\/2)+i sin\u2061(\u03c0\/2))=\\sqrt[6]{7}i\\\\" ;
"z_2=\\sqrt[6]{7}(cos\u2061(5\u03c0\/6)+i sin\u2061(5\u03c0\/6))=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i\\\\" ;
"z_3=\\sqrt[6]{7}(cos\u2061(5\u03c0\/6)+i sin\u2061(5\u03c0\/6))=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i\\\\";
"z_4=\\sqrt[6]{7}(cos\u2061(3\u03c0\/2)+i sin\u2061(3\u03c0\/2))=-\\sqrt[6]{7}i\\\\";
"z_5=\\sqrt[6]{7}(cos\u2061(5\u03c0\/6)+i sin\u2061(5\u03c0\/6))=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i\\\\" ;
Answer: "z_0=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i;"
"z_1=\\sqrt[6]{7}i" ;
"z_2=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i";
"z_3=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i";
"z_4=-\\sqrt[6]{7}i";
"z_5=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i".
Comments
Leave a comment