from here
z 0 = 7 6 ( c o s ( π / 6 ) + i s i n ( π / 6 ) ) = ( 7 6 ⋅ 3 ) / 2 + ( 7 6 / 2 ) i z_0=\sqrt[6]{7}(cos(π/6)+i sin(π/6))=(\sqrt[6]{7}\sdot\sqrt{3})/2+(\sqrt[6]{7}/2)i\\ z 0 = 6 7 ( cos ( π /6 ) + i s in ( π /6 )) = ( 6 7 ⋅ 3 ) /2 + ( 6 7 /2 ) i ;
z 1 = 7 6 ( c o s ( π / 2 ) + i s i n ( π / 2 ) ) = 7 6 i z_1=\sqrt[6]{7}(cos(π/2)+i sin(π/2))=\sqrt[6]{7}i\\ z 1 = 6 7 ( cos ( π /2 ) + i s in ( π /2 )) = 6 7 i ;
z 2 = 7 6 ( c o s ( 5 π / 6 ) + i s i n ( 5 π / 6 ) ) = − ( 7 6 ⋅ 3 ) / 2 + ( 7 6 / 2 ) i z_2=\sqrt[6]{7}(cos(5π/6)+i sin(5π/6))=-(\sqrt[6]{7}\sdot\sqrt{3})/2+(\sqrt[6]{7}/2)i\\ z 2 = 6 7 ( cos ( 5 π /6 ) + i s in ( 5 π /6 )) = − ( 6 7 ⋅ 3 ) /2 + ( 6 7 /2 ) i ;
z 3 = 7 6 ( c o s ( 5 π / 6 ) + i s i n ( 5 π / 6 ) ) = − ( 7 6 ⋅ 3 ) / 2 − ( 7 6 / 2 ) i z_3=\sqrt[6]{7}(cos(5π/6)+i sin(5π/6))=-(\sqrt[6]{7}\sdot\sqrt{3})/2-(\sqrt[6]{7}/2)i\\ z 3 = 6 7 ( cos ( 5 π /6 ) + i s in ( 5 π /6 )) = − ( 6 7 ⋅ 3 ) /2 − ( 6 7 /2 ) i ;
z 4 = 7 6 ( c o s ( 3 π / 2 ) + i s i n ( 3 π / 2 ) ) = − 7 6 i z_4=\sqrt[6]{7}(cos(3π/2)+i sin(3π/2))=-\sqrt[6]{7}i\\ z 4 = 6 7 ( cos ( 3 π /2 ) + i s in ( 3 π /2 )) = − 6 7 i ;
z 5 = 7 6 ( c o s ( 5 π / 6 ) + i s i n ( 5 π / 6 ) ) = ( 7 6 ⋅ 3 ) / 2 − ( 7 6 / 2 ) i z_5=\sqrt[6]{7}(cos(5π/6)+i sin(5π/6))=(\sqrt[6]{7}\sdot\sqrt{3})/2-(\sqrt[6]{7}/2)i\\ z 5 = 6 7 ( cos ( 5 π /6 ) + i s in ( 5 π /6 )) = ( 6 7 ⋅ 3 ) /2 − ( 6 7 /2 ) i ;
Answer: z 0 = ( 7 6 ⋅ 3 ) / 2 + ( 7 6 / 2 ) i ; z_0=(\sqrt[6]{7}\sdot\sqrt{3})/2+(\sqrt[6]{7}/2)i; z 0 = ( 6 7 ⋅ 3 ) /2 + ( 6 7 /2 ) i ;
z 1 = 7 6 i z_1=\sqrt[6]{7}i z 1 = 6 7 i ;
z 2 = − ( 7 6 ⋅ 3 ) / 2 + ( 7 6 / 2 ) i z_2=-(\sqrt[6]{7}\sdot\sqrt{3})/2+(\sqrt[6]{7}/2)i z 2 = − ( 6 7 ⋅ 3 ) /2 + ( 6 7 /2 ) i ;
z 3 = − ( 7 6 ⋅ 3 ) / 2 − ( 7 6 / 2 ) i z_3=-(\sqrt[6]{7}\sdot\sqrt{3})/2-(\sqrt[6]{7}/2)i z 3 = − ( 6 7 ⋅ 3 ) /2 − ( 6 7 /2 ) i ;
z 4 = − 7 6 i z_4=-\sqrt[6]{7}i z 4 = − 6 7 i ;
z 5 = ( 7 6 ⋅ 3 ) / 2 − ( 7 6 / 2 ) i z_5=(\sqrt[6]{7}\sdot\sqrt{3})/2-(\sqrt[6]{7}/2)i z 5 = ( 6 7 ⋅ 3 ) /2 − ( 6 7 /2 ) i .
Comments