Answer to Question #107109 in Algebra for Chinmoy Kumar Bera

Question #107109
obtain the 6th root of -7 and represent them in argand diagram
1
Expert's answer
2020-04-01T14:08:15-0400


"\\sqrt[6]{-7}" we need to write the number -7 in trigonometric form: "-7=7(cos \u03c0 + \u0456 sin \u03c0)" "z_k=\\sqrt[6]{7}(cos\u2061(\u03c0\/6+(2\u03c0\/6) k)+i sin\u2061(\u03c0\/6+(2\u03c0\/6) k)),\nk=0,1,2,3,4,5"

from here

"z_0=\\sqrt[6]{7}(cos\u2061(\u03c0\/6)+i sin\u2061(\u03c0\/6))=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i\\\\" ;

"z_1=\\sqrt[6]{7}(cos\u2061(\u03c0\/2)+i sin\u2061(\u03c0\/2))=\\sqrt[6]{7}i\\\\" ;

"z_2=\\sqrt[6]{7}(cos\u2061(5\u03c0\/6)+i sin\u2061(5\u03c0\/6))=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i\\\\" ;

"z_3=\\sqrt[6]{7}(cos\u2061(5\u03c0\/6)+i sin\u2061(5\u03c0\/6))=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i\\\\";

"z_4=\\sqrt[6]{7}(cos\u2061(3\u03c0\/2)+i sin\u2061(3\u03c0\/2))=-\\sqrt[6]{7}i\\\\";

"z_5=\\sqrt[6]{7}(cos\u2061(5\u03c0\/6)+i sin\u2061(5\u03c0\/6))=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i\\\\" ;



Answer: "z_0=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i;"

"z_1=\\sqrt[6]{7}i" ;

"z_2=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2+(\\sqrt[6]{7}\/2)i";

"z_3=-(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i";

"z_4=-\\sqrt[6]{7}i";

"z_5=(\\sqrt[6]{7}\\sdot\\sqrt{3})\/2-(\\sqrt[6]{7}\/2)i".




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS