1) We prove the first of the inequalities
"\\left(\\frac{x+y+z}{3}\\right)^{x+y+z}\\le x^x\\cdot y^y\\cdot z^z\\Longleftrightarrow\\\\[0.5cm]\n\\ln\\left(\\left(\\frac{x+y+z}{3}\\right)^{x+y+z}\\right)\\le\\ln\\left(x^x\\cdot y^y\\cdot z^z\\right)\\Longleftrightarrow\\\\[0.5cm]\n\\left.(x+y+z)\\ln\\left(\\frac{x+y+z}{3}\\right)\\le x\\ln x+y\\ln y+z\\ln z\\right|\\cdot\\frac{1}{3}\\\\[0.5cm]\n\\boxed{\\frac{x+y+z}{3}\\ln\\left(\\frac{x+y+z}{3}\\right)\\le\\frac{x}{3}\\ln x+\\frac{y}{3}\\ln y+\\frac{z}{3}\\ln z}"
Now recall Jensen's inequality. For a real convex function "\\varphi" , numbers "x_{1},x_{2},\\ldots ,x_{n}" in its domain, and positive weights "a_{i}" , Jensen's inequality can be stated as:
"\\varphi\\left(\\frac{\\sum a_ix_i}{\\sum a_i}\\right)\\le\\frac{\\sum a_i\\varphi(x_i)}{\\sum a_i}"
( More information: https://en.wikipedia.org/wiki/Jensen%27s_inequality )
In our case,
"a_1=a_2=a_3=1\\\\\n\\varphi(x)=x\\cdot\\ln x"It remains to prove that the function "\\varphi(x)=x\\cdot\\ln x" is convex.
To do this, we calculate the second derivative
"y=x\\ln x\\rightarrow y'=\\ln x+1\\rightarrow y''=\\frac{1}{x}>0, \\forall x\\in\\mathbb N" Q.E.D.
Comments
Leave a comment