Question #103712
prove that ((x+y+z)/3)^(x+y+x) <=x^x.y^y.z^z<=((x²+y²+z²)/(x+y+z))^(x+y+z) where x,y,z bleongs to N
1
Expert's answer
2020-03-02T09:25:22-0500

1) We prove the first of the inequalities


(x+y+z3)x+y+zxxyyzzln((x+y+z3)x+y+z)ln(xxyyzz)(x+y+z)ln(x+y+z3)xlnx+ylny+zlnz13x+y+z3ln(x+y+z3)x3lnx+y3lny+z3lnz\left(\frac{x+y+z}{3}\right)^{x+y+z}\le x^x\cdot y^y\cdot z^z\Longleftrightarrow\\[0.5cm] \ln\left(\left(\frac{x+y+z}{3}\right)^{x+y+z}\right)\le\ln\left(x^x\cdot y^y\cdot z^z\right)\Longleftrightarrow\\[0.5cm] \left.(x+y+z)\ln\left(\frac{x+y+z}{3}\right)\le x\ln x+y\ln y+z\ln z\right|\cdot\frac{1}{3}\\[0.5cm] \boxed{\frac{x+y+z}{3}\ln\left(\frac{x+y+z}{3}\right)\le\frac{x}{3}\ln x+\frac{y}{3}\ln y+\frac{z}{3}\ln z}

Now recall Jensen's inequality. For a real convex function φ\varphi , numbers x1,x2,,xnx_{1},x_{2},\ldots ,x_{n}  in its domain, and positive weights aia_{i} , Jensen's inequality can be stated as:



φ(aixiai)aiφ(xi)ai\varphi\left(\frac{\sum a_ix_i}{\sum a_i}\right)\le\frac{\sum a_i\varphi(x_i)}{\sum a_i}



( More information: https://en.wikipedia.org/wiki/Jensen%27s_inequality )

In our case,


a1=a2=a3=1φ(x)=xlnxa_1=a_2=a_3=1\\ \varphi(x)=x\cdot\ln x

It remains to prove that the function φ(x)=xlnx\varphi(x)=x\cdot\ln x is convex.

To do this, we calculate the second derivative



y=xlnxy=lnx+1y=1x>0,xNy=x\ln x\rightarrow y'=\ln x+1\rightarrow y''=\frac{1}{x}>0, \forall x\in\mathbb N

Q.E.D.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS