1) We prove the first of the inequalities
( x + y + z 3 ) x + y + z ≤ x x ⋅ y y ⋅ z z ⟺ ln ( ( x + y + z 3 ) x + y + z ) ≤ ln ( x x ⋅ y y ⋅ z z ) ⟺ ( x + y + z ) ln ( x + y + z 3 ) ≤ x ln x + y ln y + z ln z ∣ ⋅ 1 3 x + y + z 3 ln ( x + y + z 3 ) ≤ x 3 ln x + y 3 ln y + z 3 ln z \left(\frac{x+y+z}{3}\right)^{x+y+z}\le x^x\cdot y^y\cdot z^z\Longleftrightarrow\\[0.5cm]
\ln\left(\left(\frac{x+y+z}{3}\right)^{x+y+z}\right)\le\ln\left(x^x\cdot y^y\cdot z^z\right)\Longleftrightarrow\\[0.5cm]
\left.(x+y+z)\ln\left(\frac{x+y+z}{3}\right)\le x\ln x+y\ln y+z\ln z\right|\cdot\frac{1}{3}\\[0.5cm]
\boxed{\frac{x+y+z}{3}\ln\left(\frac{x+y+z}{3}\right)\le\frac{x}{3}\ln x+\frac{y}{3}\ln y+\frac{z}{3}\ln z} ( 3 x + y + z ) x + y + z ≤ x x ⋅ y y ⋅ z z ⟺ ln ( ( 3 x + y + z ) x + y + z ) ≤ ln ( x x ⋅ y y ⋅ z z ) ⟺ ( x + y + z ) ln ( 3 x + y + z ) ≤ x ln x + y ln y + z ln z ∣ ∣ ⋅ 3 1 3 x + y + z ln ( 3 x + y + z ) ≤ 3 x ln x + 3 y ln y + 3 z ln z
Now recall Jensen's inequality. For a real convex function φ \varphi φ , numbers x 1 , x 2 , … , x n x_{1},x_{2},\ldots ,x_{n} x 1 , x 2 , … , x n in its domain, and positive weights a i a_{i} a i , Jensen's inequality can be stated as:
φ ( ∑ a i x i ∑ a i ) ≤ ∑ a i φ ( x i ) ∑ a i \varphi\left(\frac{\sum a_ix_i}{\sum a_i}\right)\le\frac{\sum a_i\varphi(x_i)}{\sum a_i} φ ( ∑ a i ∑ a i x i ) ≤ ∑ a i ∑ a i φ ( x i )
( More information: https://en.wikipedia.org/wiki/Jensen%27s_inequality )
In our case,
a 1 = a 2 = a 3 = 1 φ ( x ) = x ⋅ ln x a_1=a_2=a_3=1\\
\varphi(x)=x\cdot\ln x a 1 = a 2 = a 3 = 1 φ ( x ) = x ⋅ ln x It remains to prove that the function φ ( x ) = x ⋅ ln x \varphi(x)=x\cdot\ln x φ ( x ) = x ⋅ ln x is convex.
To do this, we calculate the second derivative
y = x ln x → y ′ = ln x + 1 → y ′ ′ = 1 x > 0 , ∀ x ∈ N y=x\ln x\rightarrow y'=\ln x+1\rightarrow y''=\frac{1}{x}>0, \forall x\in\mathbb N y = x ln x → y ′ = ln x + 1 → y ′′ = x 1 > 0 , ∀ x ∈ N Q.E.D.
Comments