Solution. Solve the quadratic equation
x2−14x+36=0
D=(−14)2−4×36=52
The roots of the equation is equal to
x1=214+52=7+13
x2=214−52=7−13 Consider the value
(7+13)k+(7−13)k=
=(7+13+7−13)((7+13)k−1+(7−13)k−1)−
−(7+13)(7−13)k−1−(7−13)(7+13)k−1=
=14((7+13)k−1+(7−13)k−1)−36((7+13)k−2+(7−13)k−2)
For the sum we got the recurrence equation
Sk=14Sk−1−36Sk−2 Solve the recurrence equation.
S1=7+13+7−13=14
S2=2×49+1413−1413+2×13=124 S1 is divisible by 2; S2 is divisible by 4.
Find S3
S3=14×S2−36×S1=14×124−36×14=12321232 is not divisible by 6.
Comments