Solution. Solve the quadratic equation
x 2 − 14 x + 36 = 0 x^2-14x+36=0 x 2 − 14 x + 36 = 0
D = ( − 14 ) 2 − 4 × 36 = 52 D=(-14)^2-4\times36=52 D = ( − 14 ) 2 − 4 × 36 = 52
The roots of the equation is equal to
x 1 = 14 + 52 2 = 7 + 13 x_1=\frac{14+\sqrt{52}}{2}=7+\sqrt{13} x 1 = 2 14 + 52 = 7 + 13
x 2 = 14 − 52 2 = 7 − 13 x_2=\frac{14-\sqrt{52}}{2}=7-\sqrt{13} x 2 = 2 14 − 52 = 7 − 13 Consider the value
( 7 + 13 ) k + ( 7 − 13 ) k = (7+\sqrt{13})^k+(7-\sqrt{13})^k= ( 7 + 13 ) k + ( 7 − 13 ) k =
= ( 7 + 13 + 7 − 13 ) ( ( 7 + 13 ) k − 1 + ( 7 − 13 ) k − 1 ) − =(7+\sqrt{13}+7-\sqrt{13})((7+\sqrt{13})^{k-1}+(7-\sqrt{13})^{k-1})- = ( 7 + 13 + 7 − 13 ) (( 7 + 13 ) k − 1 + ( 7 − 13 ) k − 1 ) −
− ( 7 + 13 ) ( 7 − 13 ) k − 1 − ( 7 − 13 ) ( 7 + 13 ) k − 1 = -(7+\sqrt{13})(7-\sqrt{13})^{k-1}-(7-\sqrt{13})(7+\sqrt{13})^{k-1}= − ( 7 + 13 ) ( 7 − 13 ) k − 1 − ( 7 − 13 ) ( 7 + 13 ) k − 1 =
= 14 ( ( 7 + 13 ) k − 1 + ( 7 − 13 ) k − 1 ) − 36 ( ( 7 + 13 ) k − 2 + ( 7 − 13 ) k − 2 ) =14((7+\sqrt{13})^{k-1}+(7-\sqrt{13})^{k-1})-36((7+\sqrt{13})^{k-2}+(7-\sqrt{13})^{k-2}) = 14 (( 7 + 13 ) k − 1 + ( 7 − 13 ) k − 1 ) − 36 (( 7 + 13 ) k − 2 + ( 7 − 13 ) k − 2 )
For the sum we got the recurrence equation
S k = 14 S k − 1 − 36 S k − 2 S_k=14S_{k-1}-36S_{k-2} S k = 14 S k − 1 − 36 S k − 2 Solve the recurrence equation.
S 1 = 7 + 13 + 7 − 13 = 14 S_1=7+\sqrt{13}+7-\sqrt{13}=14 S 1 = 7 + 13 + 7 − 13 = 14
S 2 = 2 × 49 + 14 13 − 14 13 + 2 × 13 = 124 S_2=2\times49+14\sqrt{13}-14\sqrt{13}+2\times13=124 S 2 = 2 × 49 + 14 13 − 14 13 + 2 × 13 = 124 S1 is divisible by 2; S2 is divisible by 4.
Find S3
S 3 = 14 × S 2 − 36 × S 1 = 14 × 124 − 36 × 14 = 1232 S_3=14\times S_2-36\times S_1=14\times124-36\times14=1232 S 3 = 14 × S 2 − 36 × S 1 = 14 × 124 − 36 × 14 = 1232 1232 is not divisible by 6.
Comments