Question #102337
Let a and b be the roots of x²-14x+36=0 show that a^n+b^n is divisible by 2n
1
Expert's answer
2020-02-05T08:51:51-0500

Solution. Solve the quadratic equation


x214x+36=0x^2-14x+36=0

D=(14)24×36=52D=(-14)^2-4\times36=52

The roots of the equation is equal to


x1=14+522=7+13x_1=\frac{14+\sqrt{52}}{2}=7+\sqrt{13}

x2=14522=713x_2=\frac{14-\sqrt{52}}{2}=7-\sqrt{13}

Consider the value


(7+13)k+(713)k=(7+\sqrt{13})^k+(7-\sqrt{13})^k=

=(7+13+713)((7+13)k1+(713)k1)=(7+\sqrt{13}+7-\sqrt{13})((7+\sqrt{13})^{k-1}+(7-\sqrt{13})^{k-1})-


(7+13)(713)k1(713)(7+13)k1=-(7+\sqrt{13})(7-\sqrt{13})^{k-1}-(7-\sqrt{13})(7+\sqrt{13})^{k-1}=

=14((7+13)k1+(713)k1)36((7+13)k2+(713)k2)=14((7+\sqrt{13})^{k-1}+(7-\sqrt{13})^{k-1})-36((7+\sqrt{13})^{k-2}+(7-\sqrt{13})^{k-2})

For the sum we got the recurrence equation


Sk=14Sk136Sk2S_k=14S_{k-1}-36S_{k-2}

Solve the recurrence equation.


S1=7+13+713=14S_1=7+\sqrt{13}+7-\sqrt{13}=14

S2=2×49+14131413+2×13=124S_2=2\times49+14\sqrt{13}-14\sqrt{13}+2\times13=124

S1 is divisible by 2; S2 is divisible by 4.

Find S3


S3=14×S236×S1=14×12436×14=1232S_3=14\times S_2-36\times S_1=14\times124-36\times14=1232

1232 is not divisible by 6.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS