Question #100875
Given that real numbers x,y,z satisfy the system of equations
x+y+z=6
x^2+y^2+z^2=26
x^3+y^3+z^3=90
Find the values of x×y×z and x^4+y^4+z^4
1
Expert's answer
2019-12-31T07:00:54-0500

36=(x+y+z)2=(x2+y2+z2)+2(xy+yz+zx)=26+2(xy+yz+zx)36=(x+y+z)^2=(x^2+y^2+z^2)+2(xy+yz+zx)=26+2(xy+y z+zx)

xy+yz+zx=(3626)/2=10/2=5⇒xy+yz+zx=(36−26)/2=10/2=5


Using formula

(x+y+z)(x2+y2+z2xyyzzx)=x3+y3+z33xyz(x+y+z)(x^2+y^2+z^2-xy−yz−zx)=x^3+y^3+z^3−3xyz

We can find xyz:

6(265)=903xyz,126=903xyz,xyz=(90126)/3=36/3=126(26−5)=90−3xyz,126=90−3xyz,xyz=(90−126)/3=−36/3=−12


Using formula x4+y4+z4=(x+y+z)44(x+y+z)2(xy+yz+zx)+2(xy+yz+zx)2+4(x+y+z)xyzx^4+y^4+z^4=(x+y+z)^4−4(x+y+z)^2(xy+yz+zx) +2(xy+yz+zx) ^2 +4(x+y+z)xyz


We can find x4+y4+z4=644625+252+46(12)=338x ^4 +y ^4 +z ^4 =6 ^4 −4∗6 ^2 ∗5+2∗5 ^2 +4∗6∗(−12)=338

Answer: xyz=12,x4+y4+z4=338xyz=−12,x ^4 +y ^4 +z ^4 =338


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
31.12.19, 20:31

The x+y+z=6 is the first equation of the initial system of equations. Squaring both sides of this equation one gets (x+y+z)^2=6^2, hence (x+y+z)^2=36.

Farseen
31.12.19, 16:51

How did you get (x+y+z)^2= 36

LATEST TUTORIALS
APPROVED BY CLIENTS