36=(x+y+z)2=(x2+y2+z2)+2(xy+yz+zx)=26+2(xy+yz+zx)
⇒xy+yz+zx=(36−26)/2=10/2=5
Using formula
(x+y+z)(x2+y2+z2−xy−yz−zx)=x3+y3+z3−3xyz
We can find xyz:
6(26−5)=90−3xyz,126=90−3xyz,xyz=(90−126)/3=−36/3=−12
Using formula x4+y4+z4=(x+y+z)4−4(x+y+z)2(xy+yz+zx)+2(xy+yz+zx)2+4(x+y+z)xyz
We can find x4+y4+z4=64−4∗62∗5+2∗52+4∗6∗(−12)=338
Answer: xyz=−12,x4+y4+z4=338
Comments
The x+y+z=6 is the first equation of the initial system of equations. Squaring both sides of this equation one gets (x+y+z)^2=6^2, hence (x+y+z)^2=36.
How did you get (x+y+z)^2= 36